ACARP ACARP ACARP ACARP
Open Cut

Online Monitoring of Lubrication Oil Contamination and Degradation

Open Cut » Maintenance & Equipment

Published: April 02Project Number: C9037

Get ReportAuthor: Shengen Hu | CSIRO Energy Technology

Issues
The repairs and downtime caused by oil-related engine or other machine failures represent about 30-50% of the operational cost in the Australian mining industry. The reliable monitoring of the effectiveness of working lubrication oils and the condition of lubricant wetted components is crucial to preventing oil related failures of mining equipment. However, current diagnostic tests based on Scheduled Oil Sampling and used oil analysis cannot promptly detect a rapidly progressing component failure or a sudden ingestion of oil contaminants, as well as oil degradation ahead of time. Moreover, it can be wasteful to change oil before it becomes necessary, and the service schedule recommended by equipment manufactures may not be suitable to specific operating conditions that shorten the oil life. The use of "Oil Burn" technology will result in oil contamination and degradation in the high level range for a long period of time. Therefore, a small change in contamination and degradation levels may be sufficient to trigger an unacceptable condition. If the "Oil Burn" technology is widely adopted by Australian coal industry, it will become very necessary to have an on-board system to monitor and predict oil condition over the 10 to 12 month life of the oil.

Objectives
The overall objective of this project is to develop an on-board and/or portable detector for monitoring the condition of lubrication oil and the concentration and the average size of ferrous wear particles. The specific aim at this stage is to develop prototypes of the detector and investigate its capability on oil samples with identified contaminants and degradation levels.

The Approach
The on-board detector is based on the Electrical Impedance Spectroscopy (EIS) technique, in which the electrical impedance spectrum of oils is measured over the frequency range of 0.1 Hz to 1 MHz. Changes in the frequency response reflect a change in the oil composition, and by deconvoluting the signals attributable to different components in oils, one can detect or determine the type and level of oil contaminants and degradation. The measurements of impedance spectra require relatively simple instrumentation. Thus, the detector is low-cost, robust and fast. The detector can be constructed in either on-board or portable type, and the latter can be used in routine inspections of multiple vehicles and equipment. In order to increase the sensitivity of the detector for low concentrations of ferrous wear metals, an electromagnet is used to attract ferrous wear particles into the gap between electrodes.

Conclusions
An effective detector based on electrical impedance spectroscopy has been developed and can be used for:

  • Detecting the oil brand and/or type of a fresh oil added into the oil sump and therefore reducing the chance of using inappropriate or incompatible oils,
  • Detecting abnormal levels (>0.5%) of water contamination,
  • Detecting abnormal levels of coolant and fuel contamination,
  • Monitoring depletion of additives in lubrication oils,
  • Quantitatively determining oxidation degrees of lubrication oils,
  • Detecting excessive levels of soot,
  • Detecting excessive level of sulfur products,
  • Quantitatively determining the concentration of ferrous wear particles,
  • Determining the average size of ferrous wear particles.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C33029Review Longwall Face Ventilation To Mitigate Goaf Gas Emissions Onto Walkways And Tailgate End

As longwall mining increasingly targets deeper coal seams, managing ...

C29009Control Of Transient Touch Voltages During Switching

There have been an increasing number of electric shock incidents rep...

C29025Effectiveness Of Shotcrete In Underground Coal Mines

The primary objective of this project is to quantify the effectivene...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C33057Foreign Contaminants Detection On Conveyor Belts Using Digital Imaging Processing Techniques And Coal Penetrating Sensors

This project was initiated to tackle the ongoing issue of foreign co...

C29061Improving Flotation With A Combined Method

This project aimed to develop and assess a method combining the use ...

C33053Improving Centrifugal Dewatering Via Modelling And Analysis

The aim of the project was to develop a model for screen bowl centri...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C34059Coke Reactivity With CO2 And H2O And Impacts On Coke Microstructure And Gas Diffusion

With the global shift to low-carbon ironmaking, partial substitution...

C34055Factors Underpinning The Gasification Reactivity Of Coke RMDC And IMDC With CO2

It is well known that the gasification reactivity of metallurgical c...

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC