Open Cut

Online Monitoring of Lubrication Oil Contamination and Degradation

Open Cut » Maintenance & Equipment

Published: April 02Project Number: C9037

Get ReportAuthor: Shengen Hu | CSIRO Energy Technology

The repairs and downtime caused by oil-related engine or other machine failures represent about 30-50% of the operational cost in the Australian mining industry. The reliable monitoring of the effectiveness of working lubrication oils and the condition of lubricant wetted components is crucial to preventing oil related failures of mining equipment. However, current diagnostic tests based on Scheduled Oil Sampling and used oil analysis cannot promptly detect a rapidly progressing component failure or a sudden ingestion of oil contaminants, as well as oil degradation ahead of time. Moreover, it can be wasteful to change oil before it becomes necessary, and the service schedule recommended by equipment manufactures may not be suitable to specific operating conditions that shorten the oil life. The use of "Oil Burn" technology will result in oil contamination and degradation in the high level range for a long period of time. Therefore, a small change in contamination and degradation levels may be sufficient to trigger an unacceptable condition. If the "Oil Burn" technology is widely adopted by Australian coal industry, it will become very necessary to have an on-board system to monitor and predict oil condition over the 10 to 12 month life of the oil.

The overall objective of this project is to develop an on-board and/or portable detector for monitoring the condition of lubrication oil and the concentration and the average size of ferrous wear particles. The specific aim at this stage is to develop prototypes of the detector and investigate its capability on oil samples with identified contaminants and degradation levels.

The Approach
The on-board detector is based on the Electrical Impedance Spectroscopy (EIS) technique, in which the electrical impedance spectrum of oils is measured over the frequency range of 0.1 Hz to 1 MHz. Changes in the frequency response reflect a change in the oil composition, and by deconvoluting the signals attributable to different components in oils, one can detect or determine the type and level of oil contaminants and degradation. The measurements of impedance spectra require relatively simple instrumentation. Thus, the detector is low-cost, robust and fast. The detector can be constructed in either on-board or portable type, and the latter can be used in routine inspections of multiple vehicles and equipment. In order to increase the sensitivity of the detector for low concentrations of ferrous wear metals, an electromagnet is used to attract ferrous wear particles into the gap between electrodes.

An effective detector based on electrical impedance spectroscopy has been developed and can be used for:

  • Detecting the oil brand and/or type of a fresh oil added into the oil sump and therefore reducing the chance of using inappropriate or incompatible oils,
  • Detecting abnormal levels (>0.5%) of water contamination,
  • Detecting abnormal levels of coolant and fuel contamination,
  • Monitoring depletion of additives in lubrication oils,
  • Quantitatively determining oxidation degrees of lubrication oils,
  • Detecting excessive levels of soot,
  • Detecting excessive level of sulfur products,
  • Quantitatively determining the concentration of ferrous wear particles,
  • Determining the average size of ferrous wear particles.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C25060Development Of Borehole Shear Monitoring Device For Routine Application In Coal Mine Roadways

This project outlines the development of a cost effective, routine s...

C26063Reliable Estimation Of Horizontal Stress Magnitudes From Borehole Breakout Data

The main objective of the project is to develop a reliable and simpl...

C26053Predict Stress State And Geotechnical Conditions Near Major Geological Structures Using Microseismic Technology And Distinct Element Modelling

Stress state and geotechnical conditions often change significantly ...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C25031Developing Closure Criteria For River Diversions: An Alternative To Reference Sites

The use of reference sites for establishing closure criteria in area...

C25025Guidelines For Estimating Coal Measure Rock Mass Strength From Laboratory Properties - Report A Empirical Approach And Report B Synthetic Rock Mass Models

This report combined different approaches to investigate the estimat...

C27074Tyre Integrity Monitoring

Driving mine trucks with underinflated and overloaded tyres subjects...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C25019Adaptation Of Coal Grain Analysis To Improve Flotation Yield Estimation

This project involved sampling of full-scale flotation circuits at ...

C250083D Flotation Of Fine Particles

In this project a process for the continuous, selective agglomeratio...

C25012Dewatering Of Ultrafine Coals And Tailings By Centrifugation: Pilot Scale Studies

Dewatering of ultrafine coal and tailings is a big challenge to the ...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C27047Combustion Characteristics Of Australian Export Thermal Coal Using Advanced Imaging Techniques

During pulverised fuel combustion, coal particles are rapidly pyroly...

C26044Physical And Chemical Interactions Occurring During Cokemaking And Their Influence On Coke Strength

This project builds onto a previous project , C24055 in which macera...

C27056Imaging Gas Penetration Inside Coals And Cokes And Determining Influence On Coke Reactivity

The suitability of cokes for use in a blast furnace is determined by...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

C27008Selective Absorption Of Methane By Ionic Liquids

The connection of a ventilation air methane (VAM) abatement plant di...

C24061Proof-Of-Concept Photocatalytic Destruction Of Methane For Coal Mining Fugitive Emissions Abatement

Australia's fugitive emissions in 2015 were 41 Mt CO2-e (representin...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook