ACARP ACARP ACARP ACARP
Underground

Development of Hydraulic Fracturing to Control Windblast

Underground » Strata Control and Windblasts

Published: November 01Project Number: C9024

Get ReportAuthor: Ken Mills, Rob Jeffrey | SCT Operations, CSIRO Petroleum, HFT

This project was conceived following the first successful application of hydraulic fracturing to control caving at Moonee Colliery. The routine use of hydraulic fracturing at Moonee has provided a unique opportunity for development and refinement of hydraulic fracturing technique in a mining application. This final report summarises the experience at Moonee and describes the technical developments that have been made possible through the funding provided for this project by ACARP.

The initial investigation of hydraulic fracturing at Moonee, the introduction and integration into routine operations and the ongoing refinement of the technique over five longwall panels are described as an example of how this technology can be successfully applied. The path was not always smooth, good luck was certainly a factor at times, but it is also a story of the application of careful observation and measurement, scientific analysis combined with engineering judgement and a high level of ongoing commitment by everyone involved.

Hydraulic fracturing is widely used in the petroleum industry to stimulate oil and gas production from underground reservoirs and is a well-developed technology. The technique is also used on a small scale to measure in situ stresses in exploration boreholes. It is essentially a process whereby fluid under pressure is used to create a fracture in rock that grows outward from a single injection point in a direction governed by the stresses acting in the rock strata. Armed with a sound understanding of the stress field, the rock properties and the geomechanical processes active in a particular mining environment, it is possible to use hydraulic fractures to bring about, in a cheap and efficient manner, specific outcomes that are favourable to mining.

In the case of Moonee, the desired outcome is to induce the goaf to fall while men are not present on the longwall face. In other situations, hydraulic fracturing might be used to precondition a take-off road, or reduce the severity of periodic weighting, or simply to induce caving to provide a stable working environment. There is a wide range of applications. The technique requires upfront understanding of the environment, but once this understanding has been developed, hydraulic fracturing can be easily integrated into routine operations.

The process of hydraulic fracture growth in the conglomerate strata at Moonee Colliery is similar to that described in the extensive petroleum literature, but differs in several important ways. The fractures at Moonee grow in an environment where the minimum principal stress acting across the fracture plane is low or even tensile. The free surface created by mining has a significant effect on the fracture opening compliance and this effect must be taken into account when calculating fracture width and volume if models are to reliably calculate the hydraulic fracture growth rate and size. In this project, modifications have been made to existing numerical models. These modifications are described and the matching of model data with field data is presented.

Understanding the geomechanical processes is an integral part of being able to usefully apply hydraulic fracturing technology. Models of strata behaviour can range from simple conceptual models to complex numerical codes. A range of such models are described and examined in the context of controlling caving at Moonee and also in the context of controlling periodic weighting in a sandstone channel environment.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C27039True Triaxial Strength Of Coal Measure Rocks And Its Impact On Roadway Stability And Coal Burst Assessment

Rocks in the ground are subject to a range of stresses. The stresses...

C3063Underground Vehicle Design Standards And Statutory Implications

The Australian underground diesel vehicle fleet has evolved since di...

C3064Conveyor Belting And Lagging Shear Characteristics - Drive Drum Slip

The primary aim of this project was to investigate the relationsh...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C26029Geological Controls On Fluorine And Phosphorus In Bowen Basin Coals

Increasing global restrictions on fluorine in product coal prompted ...

C28033Raw Ash To Yield Relationships

Correct outcomes in yield predictions for product ash from coal bore...

C27038Establishing Self-Sustaining And Recognisable Ecological Mine Rehabilitation

In recent years an increasing interest has been placed on mining ope...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27064Dry Beneficiation Using FGX And X-Ray Sorters

Conventional dry processing methods engage a single beneficiation de...

C26010Multi-Sloped Screening Efficiency With Changing Strokes, Frequencies, Feed Solids And Feed Rates-Pilot Plant Study

Optimising multi-sloped screens is often described as an art and the...

C28059Impact Of Water Quality In Coal Handling And Preparations Plants

The objective of this project was to deliver a concise reference do...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

C27054Optimisation Of A Thermal Flow Reversal Reactor For Ventilation Air Methane Mitigation

Ventilation air methane (VAM) generally accounts for 50-85% of the t...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC