ACARP ACARP ACARP ACARP
Underground

Demonstration of Active Explosion Barrier Technology

Underground » Detection and Prevention of Fires and Explosions

Published: April 03Project Number: C9008

Get ReportAuthor: David Humphreys | SkillPro

In recent times, the effectiveness of traditional methods of coal dust explosion suppression in underground mines has come under increasing scrutiny. Current methods are based upon the widespread distribution of stone dust in mine roadways, and the construction of various types of explosion barriers utilizing stone dust or water. It has long been known that passive explosion barriers of this type are limited in the range of explosion conditions that can be successfully handled. Further, they are considered expensive, and difficult to install and maintain, particularly in a high production longwall panel.

Active explosion barriers differ significantly to traditional passive barriers by detecting the approach of an explosion and triggering the assisted dispersal of a suppression agent. Modern light detectors can be used to detect the approach of the explosion flame eliminating the reliance on pressure rise as a means of triggering, which has limited the application of active barrier technology to explosion suppression in the past. Trials of an active barrier system were recently successful in preventing the flame propagation in a coal dust explosion travelling at 120m/s.

ACARP Project C8010 began the demonstration of the technology proposed for use in an active explosion barrier. That project which has been reported earlier was intended to demonstrate the capabilities of certain technologies for the development of a low cost effective active roadway explosion barrier that could be considered as an alternative to traditional passive barriers. The test work was carried out in conjunction with the South African company, Fire and Explosion Suppression Systems (FESS) at CSIR's Kloppersbos Explosion Testing Station. The barrier utilises components developed by FESS for military and civilian explosion and fire suppression. Unfortunately, considerable difficulties were experienced and it was not until very late in the project that a successful trial was achieved.

This project was intended to expand upon the successful result obtained at the close of Project C8010 by repeating the successful trial and commencing and programme of varied test conditions for the barrier trials. Despite optimism that most of the problems had been overcome, additional testing of the barrier configuration used in Project C8010 failed repeatedly. It was concluded, however, that sufficient testing had been done to demonstrate the physical ability to detect the approach of a flame in a coal dust cloud with sufficient reliability to trigger a dispersal system. The problems identified were the reliability of some components of the dispersal system which limited the volume of extinguishant release and the suitability of the NAF extinguishant for suppressing a coal dust explosion.

As the project was of such importance to the coal industry, testing of different extinguishing agents was scheduled as part of a revised work programme. It has not been possible to commence this work due to protracted legal conflicts in South Africa.

This report will present the results of the test conducted and the conclusions to be drawn from these tests to date. It should be read in conjunction with ACARP report C8010 which provides additional background to the project and the results of earlier testing.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC