ACARP ACARP ACARP ACARP
Technical Market Support

Impact of Milling Techniques on Coke Oven Feed

Technical Market Support » Metallurgical Coal

Published: October 01Project Number: C8057

Get ReportAuthor: Frank Shi, Tom Callcott, Ruth Callcott, Joan Esterle | JKMRC, Callcott Consulting, CSIRO Exploration & Mining

The international export market for Australian coals is dominated by coking coal sales. However, few Australian coking coal producers process their coal domestically to produce direct coke oven feed. Therefore there is little understanding of how best to prepare each coal to achieve optimum coke quality and battery operations at the user end.

Coke quality is controlled by coal properties (rank, ash yield and composition), bulk material properties (size distribution, bulk density and moisture content) and coke oven parameters (oven type, heating rate, coking time, consistency of operation, method of oven loading and quenching). It is also controlled by feed preparation, in particular the best grinding process to achieve an optimum size distribution for coking behaviour.

Currently, coke oven feed is crushed to size specifications of approximately 85% passing 3mm. It is known that some coals require more energy than others to meet this specification, and generally, adjustments to milling configurations are made empirically. The major objective of this project was to develop models for the swing hammer mills under varying machine conditions to assist in the beneficiation of coke oven feeds. It was required that the models be capable of predicting hammer mill products for given feed properties and machine configurations. Alternatively, to achieve a required product from a given feed the models should be able to indicate the machine settings. The outcome of a successful simulation model is the capability to simulate the impact of changing blends or mill configurations to achieve a desired coke oven feed size distribution.

This project combined studies by JKMRC, Callcott Consulting Pty Ltd (CCPL), the CSIRO and BHP Port Kembla Steelworks. The approach of the project was to:

  • Conduct an audit on the industrial hammer mill operation at Port Kembla and collect feed samples for the BJD hammer mill tests;
  • Characterise the laboratory breakage behaviour of coal using the single particle drop weight test developed at the JKMRC. Tests on coal samples from individual lithotypes and the Port Kembla (PK) hammer mill feed were used to generate the breakage functions for JKMRC modelling;
  • Conduct pilot scale hammer mill tests at varying operating conditions;
  • Use the data to develop and calibrate hammer mill models for both the pilot scale BJD and the industrial mill at Port Kembla.

Two models were developed and are presented in this report. One uses the JKMRC approach to energy-based mechanistic modelling (Part I), the other the Callcott mathematical model with a fundamental understanding of hammer mill behaviour (Part II). Spreadsheet versions of both models are available from the authors (Frank Shi, JKMRC and Tom Callcott, Callcott Consulting Pty Ltd).

Joan Esterle - phone 07 3327 4411, joan.esterle@csiro.au
Tom Callcott - phone 02 4968 3408, consulting@callcott.com.au

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC