Technical Market Support

New Method for Determining Chlorine in Coal

Technical Market Support » Thermal Coal

Published: May 98Project Number: C6054

Get ReportAuthor: Les Dale, KW Riley | CSIRO Energy Technology

A new reference method based on x-ray fluorescence spectrometry has been developed to more accurately measure chlorine in coal.  Accurate chlorine measurement is critical for some coal producers. Elevated levels of chlorine in coal can cause corrosion problems as well as having the potential to exceed air emission limits. Although there are a large number of national standard methods for determining chlorine in coal, large discrepancies  occur between the methods and between laboratories using the same method.  Some Australian coal producers have been penalised because the chlorine levels recorded by their customers have differed from the results received from their own coal analysis laboratory.

Project Objectives

The objectives of this research are to:

  • Develop an accurate reference method for determining chlorine in coal
  • Critically assess current standard methods and identify their limitations
  • Investigate suitable alternative sample preparation methods
  • Produce a range of standard reference coals with certified chlorine values to be used by commercial laboratories to monitor quality control and provide quality assurance for the methods used.


The limitations of existing standard methods have been critically assessed in collaboration with commercial laboratories. The major problems identified were the poor sensitivity and reproducibility inherent in the procedures. The researchers recommend that the most commonly used Australian standard method (AS 1038.8.1) be modified to incorporate ion chromatography or inductively coupled plasma atomic emission spectrometry to determine the chlorine in the final collector solution.

Ion chromatography and inductively coupled plasma atomic emission spectrometry can better detect limits and, therefore, are more reliable at the 100mg/kg level than conventional methods. While the researchers recommend using these models, they accept that commercial coal analysis laboratories do not commonly use these methods to determine chlorine levels.

The researchers have also developed a new reference method based on x-ray fluorescence spectrometry (XRPS), which has been validated using instrumental neutron activation analysis (INAA). Agreement between the two techniques is within 10% over a concentration range of 100 to 1500mg/kg. INAA and XRFS offer high sensitivity with good detection limits for chlorine. The major advantage is that they are non-destructive and, therefore, do not rely on extraction of the chlorine.

Three standard reference coals with certified chlorine concentrations ranging from 0.04 to 0.12 percent are now available to commercial laboratories.

Where To From Here

Laboratories using existing standard methods need to involve a high level of quality control to ensure the methods are being operated correctly. The availability of reference coals will be useful for this purpose. The reference coals should also be valuable in resolving disputes between laboratories and conducting inter-laboratory round robins on national and international bases.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook