ACARP ACARP ACARP ACARP
Technical Market Support

Demonstration of the True Ash Fusibility Characteristics of Australian Thermal Coals. Stage 2: Prov

Technical Market Support » Thermal Coal

Published: April 98Project Number: C5060

Get ReportAuthor: S Gulpta, Terry Wall, R Gupta, Bob Creelman, R Sanders, A Lowe, J Saxby | University of Newcastle, RA Creelman & Associates, Quality Coal Consulting, CSIRO Energy Technology

The current ash fusibility temperature (AFT) test can give differences in estimates of up to 300°C for some coal ashes. This irreproducibility led to the testing of a range of methods for determining the fusibility temperatures of coal ashes.  The use of shrinkage levels for an ash sample measured using thermo-mechanical analysis (TMA) is shown to be a valid method of characterising ash fusibility behaviour. Thermo-mechanical analysis is shown to be a reliable procedure, with a typical accuracy of ± 10oC for a particular shrinkage level.

Alternative ash fusibility temperatures based on the TMA test are proposed. These temperatures correspond to particular shrinkage levels (denoted as T(S%) for S of 25%, 50%, 75% and 90%). The new temperatures suggested as indicators are:

  • Initial melting (T25%, ~25% melting),
  • Intermediate melting (T50%, ~60% melting), completion of melting (T75%, ~80% melting),
  • slag flow (T90%).

These new temperatures are shown to correlate with the observed extent of melting and calculated viscosity, which is an indication of particle stickiness in a furnace.

Project Objectives

  • to investigate alternative procedures, for characterising ash fusibility.
  • establish the scientific understanding necessary to explain the results, including relationships with plant performance as well as with the standard AFT procedure.
  • develop a correlation between ash shrinkage and ash stickiness, and therefore between shrinkage and ash deposition in furnaces

Project Method

Various approaches to evaluating the ash deposition tendencies of a coal were reviewed:

  • simultaneous electrical resistance-shrinkage measurement (HRL test)
  • improved ash fusion test (ACIRL test)
  • thermomechanical analysis (CSIRO test)

The effect of particle size, heating rate, ash chemistry and the sample configuration on the various ash fusion events observed during a measurement for each technique have also been discussed.  The samples used in the study were far ranging, but were grouped into Australian export coals, overseas export coals and Australian power station feed coals. Base data on all coals and blends have been collected and collated. Combustion ashes from a selection of power stations, mineral mixtures and synthetic glasses supplemented the coal ashes studied.  For the TMA work, the behaviour of specific ash classes was investigated and compared to AFT results. The classifications include: 

  • refractory ashes, further divided into low basic components and high basic components, where the basic components are K2O and Fe2O3
  • ashes which contain Fe2O3 and CaO as the major fluxing components
  • ashes with unusual chemistries eg very high CaO, or Na2O
  • pure mineral mixtures and synthetic glasses

The study of melting was undertaken using ash pellets a technique successfully used in previous projects.

Project Outcomes

The data and observations show that the measured shrinkage reflects the extent of melting.  An initial shrinkage event (ie minor peak temperature) in the TMA test is shown to relate to significant particle deformation. This event can account for up to 25% shrinkage, therefore the deformation temperature measured using the traditional AFT test does not necessarily represent the initial melting events.

Shrinkage at around the 50% level can be related to substantial melting. These events are related to the ash chemistry - mineralogy. The temperature of these peaks relate to the various eutectic temperatures from the known system SiO2-Al2O3-X where X = FeO, CaO, K2O.

In general, the major peak temperature for refractory ashes ranges from 1400-1600oC. However, there is a modification of the observed TMA behaviour with K2O content. The “K2O effect” is proportional to the absolute K2O content of the ash. Ashes with a high K2O content demonstrate major peaks up to 1200oC. Ashes with low K2O contents have weak peaks in the low temperature regions for deformation temperature, resulting in poor precision for deformation temperature measurement. The deformation temperature is found to represent the appearance of a substantial melt phase. The melt is the result of low melting point minerals containing K2O such as illite.

A major peak and substantial melting is observed in the temperature interval of 1100oC to 1200oC for ashes that contain high amounts of combined Fe2O3 and CaO (total basic components >10wt%). Ashes with a low SiO2/Al2O3 ratio and small amounts of Fe2O3 or CaO show a wide range of melt temperatures, whereas those with high SiO2/Al2O3 ratios or with high iron contents show a narrow range of melt temperatures. For these types of ashes shrinkage measurements adequately reflect the extent of melting.

The effect of particle size is found to be of secondary importance compared to ash chemistry when determining the rapid shrinkage events, with fine particles giving rapid shrinkage events only 10oC lower in temperature than coarser particles.

TMA shrinkage at a temperature greater than the major peak temperature is mainly associated with the dissolution of SiO2 into the existing melt phases.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC