ACARP ACARP ACARP ACARP
Technical Market Support

New Analytical Approach to Determining Minerals in Coal and Ash Products Using X-Ray Diffraction

Technical Market Support » Thermal Coal

Published: February 98Project Number: C5059

Get ReportAuthor: Les Dale, John Patterson, CE Matulis, JC Taylor | CSIRO Energy Technology

Background Coal mineral matter, particularly its composition, plays an important role in all phases of coal science from mine geology, resource development, preparation and utilisation. In the past, techniques available for determining individual mineral phases lacked the necessary accuracy to provide quantitative data. Of the techniques available, X-ray diffraction (XRD) is the most specific, in that it is based on the unique characteristic diffraction of x-rays from the crystal structure of each mineral. This was however, at best, semi quantitative because of the problems of imperfect crystalline phases, particularly prevalent in clay minerals.

The development of XRD analysis based on the Rietveld full profile opened the way for coal mineral quantitative analysis. This has been achieved with the development of SIROQUANT(tm), a computer software package capable of accurate multiphase analysis.

Objectives The aim of this project was to apply XRD to the determination of mineral phases in coal and ash products and quantify the minerals using SIROQUANT(tm). Specifically the objectives were as follows:

  • Establish an accurate method for determining coal minerals in low temperature ashes and ash products.
  • Apply the technique to the direct analysis of minerals in raw coals, that is, without the need for ashing.
  • Develop a specific SIROQUANT(tm) Coal Package which would be user-friendly by minimising operator input and processing time.
    * Demonstrate the potential application to process studies such as coal preparation plants.
  • Study mineral transformations using hot stage XRD and SIROQUANT(tm).

Conclusions Accurate quantitative data was obtained for minerals in a range of bituminous coals using X-ray diffraction and the SIROQUANT(tm) software package with the clay package. The quantification of major minerals was validated by analysis of synthetic mixtures of clays and quartz where the accuracy was better than 5 percent. For the analysis of low temperature ashes, the data was validated by comparison of the element oxide contents as determined by chemical analysis and those calculated from the minerals as determined by SIROQUANT(tm). Additional validation was demonstrated by comparison of the siderite content on some ashes compared to that inferred by chemical leaching. By the use of a spiking procedure, the SIROQUANT(tm) program allows the total amorphous material to be determined. The detection limits for most minerals was around 0.1 percent.

Raw coal was successfully analysed by the development of a structure model to simulate the organic fraction. This allowed the direct determination of the coal matter as well as the individual minerals. A good correlation (r2 = 0.89) was obtained between the radiofrequency ash value for the coals and the mineral matter as measured by the sumation of the individual mineral contents as found by SIROQUANT(tm). The data was validated by the good recoveries (>95 percent) obtained on samples of demineralised coal spiked with known amounts of kaolin and quartz. There were only minor differences in the shapes of the organic diffraction patterns of coals of different rank and it has been shown that there was little difference in the final results when various models for the coal humps were used. The detection limits for individual minerals was around 0.2 percent. The detection limits in raw coals were not substantially affected by the dilution of the mineral matter with the organic material. This was because of the very low mass absorption by the carbon, hydrogen and oxygen which are the constituents of the organic material.

A SIROQUANT(tm) Coal Package was developed based on a database of 50 minerals using a template task file. This package considerably reduces operator input and processing time. Good agreement was obtained between the mineral contents determined using the package and manual operation of the software. This package is being further refined and will be available commercially as an add-on to SIROQUANT(tm). The value of quantitative XRD was demonstrated in the determination of minerals in various streams of a coal preparation plant. This allowed the partitioning of minerals in the process to be determined and has important implications for coal preparation.

Analysis of laboratory and combusted coal ashes enabled the mineral transformations to be quantified. Specifically the conversion of clay minerals to mullite and the increased amorphous contents could be quantified.

Hot stage diffraction patterns of heated ash samples were analysed by SIROQUANT(tm) and it was possible to quantify the mineral transformations over the temperature range 800-1200?C. Quantitative analysis of coal ash over the temperature profile provided data on the production of mullite, cristobalite and magnetite and the reduction in quartz, hematite and illite.

In view of the importance of minerals transformations in studies of ash fusibility and the results obtained in this project, the Division has commissioned a state-of-the-art X-ray diffractometer with a hot stage capable of reaching temperatures of up to 1800?C. Further research, based on this instrument, will be undertaken to study mineral transformations in coal mineral matter over temperature ranges similar to those occurring in PF fired boilers.

This project has demonstrated that X-ray diffraction combined with SIROQUANT(tm) provides accurate quantitative data for minerals and crystalline phases in coal and ash products. This new capability will augment research associated with coal geology, mining, preparation and utilisation.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C33029Review Longwall Face Ventilation To Mitigate Goaf Gas Emissions Onto Walkways And Tailgate End

As longwall mining increasingly targets deeper coal seams, managing ...

C29009Control Of Transient Touch Voltages During Switching

There have been an increasing number of electric shock incidents rep...

C29025Effectiveness Of Shotcrete In Underground Coal Mines

The primary objective of this project is to quantify the effectivene...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33036Radar Tyre Monitor System

This project focussed on trialling a radar sensing technology design...

C26020Preventing Fatigue Cracking Via Proactive Surface Dressing

Fatigue cracking of plant and equipment presents a significant chall...

C33046Rationale For The Use Of Paired Continuous Real Time Noise Monitors To Reduce Uncertainty In The Quantification Of Noise From Open Cut Coal Mines

Numerous experimental studies of varying duration have been undertak...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C34041A Coal Spiral For The 2020S

The objective of this project is to develop an enhanced coal process...

C33057Foreign Contaminants Detection On Conveyor Belts Using Digital Imaging Processing Techniques And Coal Penetrating Sensors

This project was initiated to tackle the ongoing issue of foreign co...

C29065Wash Plant Fines Testing Methods Enhancement

Accurately estimating the proportion of expected fine size material ...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C34054Scoping Study: Design Of Cokes From Biomass-Coal Blends For Sustainable Blast Furnace Ironmaking

There is an increasing focus on improving the environmental sustaina...

C34058Strength Development In Fouling Deposits

When coal is combusted in a boiler, the fly ash that is produced flo...

C34059Coke Reactivity With CO2 And H2O And Impacts On Coke Microstructure And Gas Diffusion

With the global shift to low-carbon ironmaking, partial substitution...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC