Technical Market Support

Australian Coal Quality Impact Model

Technical Market Support » Thermal Coal

Published: October 96Project Number: C3091

Get ReportAuthor: Ashley Conroy, Phil Bennett | ACIRL, Australian Combustion Technology Centre

This project examines the ability of CQIM (version 1.2) to predict the performance of Australian coals in some of the many processes that occur in a modern coal-fired power station.  The continued growth in the world thermal coal market is resulting in greater diversity in thermal coal suppliers. The operators of coal-fired power stations are looking at computer software to assist in the evaluation of the impact of coal properties on the operating and maintenance costs.

One such computer software is EPRI's Coal Quality Impact Model (CQIM) developed by Black & Veatch.  CQIM is a computer model designed to facilitate the prediction of performance and cost impacts of firing alternative coals at an existing or proposed power generating station.  This project examines the ability of CQIM (version 1.2) to predict the performance of Australian coals in some of the many processes that occur in a modern coal-fired power station. The processes examined in this project were limited to ones where full or pilot scale data was available for comparison.



The processes that were examined in this project were:

  • milling
  • combustion
  • impact of ash
  • emissions
  • maintenance and availability of milling and ash handling plant

The full scale data used in this evaluation was supplied by Pacific Power, and pertained to equipment at Eraring Power Station.

Eraring Power Station operates four 660 MW IHI designed generating units. These units are single furnace, twin-drum type using natural circulation with a divided back pass and balanced draught. Each unit is fed by seven tube mills.

The pilot scale data was taken from the testing of 38 coals in ACIRL's 150kW pilot scale boiler simulation furnace. Eleven of the coals were blends.

The adjustment, based on one coal's performance, of the mill performance curves used by CQIM is a satisfactory approach to predict mill capacity for the coals being evaluated. CQIM does not attempt to predict the size distribution of the coal or mineral matter.

To determine the combustion performance of a coal, CQIM allows the user to select either a simple model or detailed model.

The simple unburned carbon model is based on empirical correlations. The detailed unburned carbon model uses estimates of the char kinetic parameters with a detailed determination of the time temperature history of the particle to estimate the unburned carbon loss.

CQIM's simple unburned carbon model gives a good estimate of the carbon burnout for a wide range of coals as shown by the comparison with pilot scale data. The detailed burnout model suffers from instability problems which could reduce its accuracy.

The use of indices, determined from the bulk ash properties, to predict slagging and fouling characteristics of a coal does not fully account for the impact of individual minerals or the influence of fluid dynamics. CQIM failed to predict the reduced heat absorption by the waterwall that was recorded during one of the tests at Eraring. This was due to the coal's unusually low ash absorptivity.


Results & Conclusions

The power of CQIM is its ability to relate coal quality to fuel costs, maintenance costs and the availability of a power station.

This ability of CQIM to model the large number of interacting processes that occur within a power station depends on the use of correlations relating these processes to coal properties.

CQIM reduces the possible errors in using empirical correlations by using the known performance of one coal to calibrate its predictions for other coals fired in the same power station.

This means the user has to be careful about the choice of the calibration coal, ensuring that this calibration coal is similar to the other coals that are to be evaluated, the completeness of its performance data.

With the improvements that are planned for future versions of CQIM, it is likely that its use by power station operators to evaluate potential coal supplies will increase. Australian producers should continue to evaluate future versions of CQIM.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C27039True Triaxial Strength Of Coal Measure Rocks And Its Impact On Roadway Stability And Coal Burst Assessment

Rocks in the ground are subject to a range of stresses. The stresses...

C3063Underground Vehicle Design Standards And Statutory Implications

The Australian underground diesel vehicle fleet has evolved since di...

C3064Conveyor Belting And Lagging Shear Characteristics - Drive Drum Slip

The primary aim of this project was to investigate the relationsh...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C29021Assessing The Impact Of Consecutive Night Shifts On Night-Time Alertness, Daytime Sleep And Timing Of The Circadian System

In the Australian coal mining industry, most guidelines for managing...

C33037Quantifying Recharge To Groundwater Systems In The NSW Coalfields (Sydney, Gunnedah And Gloucester Basins)

The purpose of this project was to estimate the rate of diffuse rec...

C26029Geological Controls On Fluorine And Phosphorus In Bowen Basin Coals

Increasing global restrictions on fluorine in product coal prompted ...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27064Dry Beneficiation Using FGX And X-Ray Sorters

Conventional dry processing methods engage a single beneficiation de...

C26010Multi-Sloped Screening Efficiency With Changing Strokes, Frequencies, Feed Solids And Feed Rates-Pilot Plant Study

Optimising multi-sloped screens is often described as an art and the...

C28059Impact Of Water Quality In Coal Handling And Preparations Plants

The objective of this project was to deliver a concise reference do...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

C27054Optimisation Of A Thermal Flow Reversal Reactor For Ventilation Air Methane Mitigation

Ventilation air methane (VAM) generally accounts for 50-85% of the t...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook