ACARP ACARP ACARP ACARP
Open Cut

Evaluation of GPS Technologies in the Open Cut Mining Industry

Open Cut » Overburden Removal

Published: June 95Project Number: C3049

Get ReportAuthor: Robert Barnes | Tritronics Australia

The global positioning system (GPS) is a satellite based system which can be used for positioning and/or surveying to 2cm accuracy horizontally and 3cm vertically anywhere on the earth's surface. There are 21 satellites currently in orbit with three spares.

GPS can be used in open cut mining operations as long as the satellites can be viewed in a direct line of sight. Tests undertaken at two mines, under worst case conditions, show that GPS works well in most situations.

Close to highwalls (within 3-4 metres) depending on the positioning of the satellites at any given time, the GPS system dropped back to two dimensional fixing, with only three satellites visible. GPS needs four satellites for a three dimensional fix.

One area of concern is the effect called multipath and this is where the satellite signal bounces off high walls and/or metal structures and gives the GPS receiver a false position fix. The aerial must be carefully mounted to ensure minimal multipath. This is very important when considering mining equipment and the type of structures involved.

There are many areas where GPS technology can improve the productivity of coal mines. Surveying will benefit greatly from real time kinematic GPS. Both accuracy and time utilisation will improve with the aid of this equipment.

Positioning of drill rigs and monitoring truck fleets will also improve mine productivity.

At this time, GPS technology comes in four levels of accuracy and cost:

100m GPS $1,000 each

2-5m DGPS $20,000 first unit

<1m DGPS $25,000 first unit (extra units $7,000 each)

2cm RTK $55,000 first unit

The price and accuracy of GPS is starting to fall and within two years it will be a very cost effective positioning and surveying system. This opens up many opportunities in the open cut mining industry, particularly with surveying, machine positioning and control.

Brief History

Like the Transit before, the GPS system is owned and maintained by the United States government. Development of the system began in the seventies and at that stage was predominantly used for US military based tasks.

Virtually all of the development of GPS equipment was under contract from the US Department of Defence. Many of the contractors to the government also had commercial involvement in similar technologies, especially receivers.

This meant that by the early eighties, commercial interest in GPS began to blossom. At this point the system was only partially implemented and so did not provide 100% coverage. As the USDOD experimented, the system would be switched off or malfunction regularly.

Transit systems having set the pace for commercial and even personal leisure use of satellite navigation, GPS development expanded rapidly. By the mid eighties, an ever increasing range of commercial GPS receivers were becoming available.

These were still limited by the partial implementation of the system. Placement of satellites into orbit continued with a later generation of satellites. By 1990, although not fully implemented, the system was sufficiently reliable to make general commercial and even personal use viable.

Although the application of GPS was always an area of theoretical interest to universities, the late eighties and early nineties also saw an explosion of papers, dissertations and proceedings describing the techniques for highly accurate positioning based on GPS.

This was largely motivated by the potential applications in surveying as partial availability of the system was relatively more acceptable in such applications.

The system has now been completed and is in full commercial use.

Accuracy

The positioning accuracy of GPS is dependent of the accuracy of the pseudo-range measurements. For time to relate to distance, the characteristics of the transmission medium must be known. This is because the speed of ratio waves is dependent on the nature of the media through which they travel.

This means that as the density of the atmosphere changes so does the speed of the GPS signals. This affects the pseudo-range measurements. To this end a GPS receiver will model the ionospheric and tropospheric delays of the GPS signals.

Using this model it is only possible to approximately halve the errors introduced by the atmosphere. Thus one of the advantages of using a GPS receiver that uses both the L1 and L2 GPS signals is that the atmospheric conditions can be better measured and so eliminated from the calculations.

The use of differential corrections, especially over a short baseline where the distance between the base station and the remote is only a few tens of kilometres, also facilitates the removal of much of the atmospheric distortion to the pseudo-range measurements.

As the baseline length increases the correlation between the atmospheric errors at the two sites decreases introducing increased errors of the order of 1m per 100km.

Control

One issue often brought up when discussing the availability of GPS and the use of systems reliant on it is control. It has been reported that because GPS is controlled by the military, it can be turned off at any time or have its services severely curtailed.

As the majority of US GPS usage involves commercial GPS equipment, any alteration to the GPS system that made commercial equipment inoperable would affect the US military most of all. Furthermore, even military GPS equipment must use the C/A code to access the satellites.

In addition, GPS has now been approved by the US FAA for use in commercial aircraft. Although there are other considerations as well, these two factors alone are sufficient reason to understand that GPS is an available positioning system, not prone to the whims of the US military.

Claims to the contrary do not stand up to the demonstrated performance over the last five years. The US DOD continue to purchase large quantities of commercial equipment.

Usage

Because GPS user equipment does not transmit, there is no limit to the number of GPS receiver that can be used on the system. There are no licensing fees for the receivers and no requirement to register their ownership. There are no restrictions on the use of GPS for positioning, and the received almanac and ephemeris information can be stored and retransmitted if required.

Although the US DOD maintain a close watch on the behaviour of the satellites, occasionally one will have a mishap and provide bad information for a couple of orbits. It is the user's responsibility to handle these problems.

The US DOD make no claims as to the behaviour of the systems at any instant, however there are many publications and information sources that keep an independent watch on the performance of GPS and publish the results into the public arena.

 

Underground

Health and safety, productivity and environment initiatives.

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC