ACARP ACARP ACARP ACARP
Technical Market Support

Improving Understanding of the Factors that Contribute to Thermoplasticity during Cokemaking and Laboratory Carbonising Tests and Impact on Coke Strength

Technical Market Support » Metallurgical Coal

Published: November 21Project Number: C28071

Get ReportAuthor: Hannah Lomas, Graham O’Brien, Sid McGuire, Richard Roest, Jessica Gray, Priyanthi Hapugoda, Merrick Mahoney, Brody Brooks, Edward Bissaker, Joshua Allen, William Murray, Arash Tahmasebi, Wei Xie, Mark Knackstedt, Richard Henley | University of Newcastle, CSIRO, Australian National University, SJM Coal Tech

This project encompassed two key components:

  • Development of inertinite analogues to investigate the link between inertinite attributes and the development of coke strength attributes, and
  • Investigation into whether laboratory carbonising test results reflect the impact of maceral associations on coke strength using coal grain analysis.

Three coals were selected:

  • Coal A, a high rank coal from the Moranbah coal measures;
  • Coal B, a medium rank coal from the Moranbah coal measures;
  • Coal D, a medium rank coal from the Rangal coal measures.

The key findings of the first project component, whereby inertinite analogues (graphite and charcoal) were used to investigate the link between inertinite attributes and coke strength, were:

  • Graphite showed higher interfacial boundary quality with the RMDC than charcoal, which is likely owing to its ability to provide pathways for the volatiles generated during coking to escape but they then become trapped within the melt.
  • Unlike graphite, charcoal was found to have bottle-neck shaped pores at its surface, which may slow the release of gas out of the pores. The combination of charcoal's high surface area and bottle-neck pore shape is expected to trap gas, to the extent that the charcoal is less available to bond to the metaplast during coking.
  • The thermoplastic behaviour of blends of each of the three parent coals with 5 wt. % charcoal, graphite or a 50:50 mix of the two.

The key findings of the second project component, whereby the impact of coal grain composition on laboratory carbonising and coke strength test results was investigated, were:

  • Coals A and D showed an increase in vitrite (i.e. liberated vitrinite) in the Gieseler and dilatation samples compared with the coke oven feed. However, the reverse trend was observed for Coal B. Five additional samples were prepared for Coal B, which were anticipated to provide insights for the unexpected result.
  • These additional 'grind' samples were prepared so that the overall composition and grind stayed the same but the proportions of vitrinite-rich and inertiniterich material at each size fraction differed.

The key recommendations are:

  • Continued efforts to understand the fundamental factors contributing to the complex phenomenon of coal thermoplasticity, including its dependence on coal geographical origin, which is critical to ensure accurate valuation of Australian coals in a competitive market.
  • In this project, Gieseler and dilatation tests were unable to detect differences in coal thermoplastic behaviour and coke strength as a function of coal grind characteristics. Herein, it is important to understand what these standard laboratory tests actually measure, and how these test results relate to actual thermoplastic behaviour of coals and coal blends during commercial cokemaking.

Other recommendations to improve the experimental procedure and analysis of the results are detailed within the report.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C33029Review Longwall Face Ventilation To Mitigate Goaf Gas Emissions Onto Walkways And Tailgate End

As longwall mining increasingly targets deeper coal seams, managing ...

C29009Control Of Transient Touch Voltages During Switching

There have been an increasing number of electric shock incidents rep...

C29025Effectiveness Of Shotcrete In Underground Coal Mines

The primary objective of this project is to quantify the effectivene...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33036Radar Tyre Monitor System

This project focussed on trialling a radar sensing technology design...

C26020Preventing Fatigue Cracking Via Proactive Surface Dressing

Fatigue cracking of plant and equipment presents a significant chall...

C33046Rationale For The Use Of Paired Continuous Real Time Noise Monitors To Reduce Uncertainty In The Quantification Of Noise From Open Cut Coal Mines

Numerous experimental studies of varying duration have been undertak...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C34041A Coal Spiral For The 2020S

The objective of this project is to develop an enhanced coal process...

C33057Foreign Contaminants Detection On Conveyor Belts Using Digital Imaging Processing Techniques And Coal Penetrating Sensors

This project was initiated to tackle the ongoing issue of foreign co...

C29065Wash Plant Fines Testing Methods Enhancement

Accurately estimating the proportion of expected fine size material ...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C34054Scoping Study: Design Of Cokes From Biomass-Coal Blends For Sustainable Blast Furnace Ironmaking

There is an increasing focus on improving the environmental sustaina...

C34058Strength Development In Fouling Deposits

When coal is combusted in a boiler, the fly ash that is produced flo...

C34059Coke Reactivity With CO2 And H2O And Impacts On Coke Microstructure And Gas Diffusion

With the global shift to low-carbon ironmaking, partial substitution...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC