Technical Market Support

Development of a Method to Compare Chemistry vs Structure Effects of Fusible Inertinite in Coke Making

Technical Market Support » Metallurgical Coal

Published: February 22Project Number: C27053

Get ReportAuthor: Joe Perkins, Graham O’Brien, Chad Hargrave, Paul McPhee, Jessica Gray, Karryn Warren, Merrick Mahoney and Priyanthi Hapugoda | CSIRO

Coking coal quality is based on a number of indices which characterise the quality of the coke product. Many standard tests exist to compare the parent coals; the resulting evaluations, however, do not always reflect accurately the real behaviour of the coals during the coking process. Using standard coal maceral qualities, the coking performance of some coal measures can exceed expected results, suggesting that they are undervalued. One reason for this discrepancy is thought to lie in the variable nature of the macerals that comprise the coals. It is known that for coals of suitable rank some of the inertinite macerals, as well as vitrinite and liptinite macerals, are fusible during coking (fusibles) and the remaining inertinite macerals and minerals do not fuse (infusibles). The challenge has been to discern accurately the attributes which determine the fusibility of inertinites, the extent of their fusibility, and the role played by the size of the fusible and infusible structures. Classifying this transitional material chemically and identifying its differences from vitrinite and semi‐fusinite proper will provide an understanding of how this material should be classified and how it will behave in coking.

The aim of this project was to apply a more fundamental approach to the prediction of coke strength and coherence from coal properties, hypothesising that:

  • The fusibility of inertinite is linked to the chemistry and reflectance of the inertinite.
  • Differences in reflectance between the different inertinite structures, and also the differences seen between vitrinite and inertinite structures, are due to the varying chemistry of these maceral structures.

Attenuated total reflection Fourier‐transform infrared spectroscopy (ATR‐FTIR) was used to quantify the aliphatic and aromatic content of vitrinite, fusible and infusible inertinite maceral structures with a range of reflectance values. From this analysis we hoped to determine a relationship between reflectance and fusibility for the different macerals.

Initially, the relationship between aliphatic content (from FTIR), maceral type and reflectance for single phase coal grains was explored. 'Infusible' inertinite in these grains was shown to contain significantly lower proportions of aliphatic content when compared to vitrinite. This was expected and confirmed previous work that inertinite contains less aliphatic functional groups than vitrinite due to the greater degree of aromaticity. Interestingly, 'fusible' inertinite appeared to contain similar proportions of aliphatic content to that of the vitrinite grains examined. An initial hypothesis therefore is that this transitional inertinite material may have the chemical structure, and therefore the coking behaviour, of slightly higher reflecting vitrinite during the coking process, rather than that typically expected of inertinite.

Transects across mixed phase grains were then investigated where FTIR spectra were collected from locations containing varying maceral content. It was observed that increasing proportions of 'fusible' material (<50% overall content measured at the FTIR collection point) appeared to result in only slight decreases in aliphatic content, reinforcing the hypothesis that fusible inertinite may have a similar chemical structure and therefore coking attributes to higher reflecting vitrinite rather than infusible inertinite.

Overall, it was observed that aliphatic content decreases with increasing reflectance in mixed phase coal grains, and whilst fusible inertinite rich grains display lower aliphatic content that vitrinite, their chemical functionality appears to be much more akin to that of vitrinite than the higher reflecting infusible inertinite. This similarity in chemical structure could be a contributing factor as to why some coals with high proportions of fusible inerts, such as the Rangal coal measure (samples 1 and 6), often exhibit different coking attributes (higher CSR and density matched by rank) than initial vitrinite and inertinite maceral proportions would suggest. Further research is required in order to link chemical functionality and other previously reported coking properties, such as reduced swelling, of Rangal coals.

Fusible material proportion >50% appeared to result in a dramatic 'cliff‐like' drop off in aliphatic functionality observed for many of the samples. One reason for this could be that as the proportion of infusible inertinite content increases, the nearby fusible material associated with it is likely to be at the upper end of the fusible inertinite range, indicating that the material is indeed 'transitional' and not a discrete structure; this suggests that further distinctions within the fusible inertinite classification could be made in the future.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C27039True Triaxial Strength Of Coal Measure Rocks And Its Impact On Roadway Stability And Coal Burst Assessment

Rocks in the ground are subject to a range of stresses. The stresses...

C3063Underground Vehicle Design Standards And Statutory Implications

The Australian underground diesel vehicle fleet has evolved since di...

C3064Conveyor Belting And Lagging Shear Characteristics - Drive Drum Slip

The primary aim of this project was to investigate the relationsh...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C29021Assessing The Impact Of Consecutive Night Shifts On Night-Time Alertness, Daytime Sleep And Timing Of The Circadian System

In the Australian coal mining industry, most guidelines for managing...

C33037Quantifying Recharge To Groundwater Systems In The NSW Coalfields (Sydney, Gunnedah And Gloucester Basins)

The purpose of this project was to estimate the rate of diffuse rec...

C26029Geological Controls On Fluorine And Phosphorus In Bowen Basin Coals

Increasing global restrictions on fluorine in product coal prompted ...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27064Dry Beneficiation Using FGX And X-Ray Sorters

Conventional dry processing methods engage a single beneficiation de...

C26010Multi-Sloped Screening Efficiency With Changing Strokes, Frequencies, Feed Solids And Feed Rates-Pilot Plant Study

Optimising multi-sloped screens is often described as an art and the...

C28059Impact Of Water Quality In Coal Handling And Preparations Plants

The objective of this project was to deliver a concise reference do...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

C27054Optimisation Of A Thermal Flow Reversal Reactor For Ventilation Air Methane Mitigation

Ventilation air methane (VAM) generally accounts for 50-85% of the t...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook