ACARP ACARP ACARP ACARP
Mine Site Greenhouse Gas Mitigation

Selective Absorption of Methane by Ionic Liquids

Mine Site Greenhouse Gas Mitigation » Mine Site Greenhouse Gas Mitigation

Published: January 19Project Number: C27008

Get ReportAuthor: Behdad Moghtaderi and Andrew Maddocks | University of Newcastle

The connection of a ventilation air methane (VAM) abatement plant directly to a ventilation shaft raises significant safety issues for underground coal mines. Eliminating the risk of a fire or explosion caused by an abatement plant is considered a step-change in abatement technology. To eliminate this risk, the plant must operate below the autoignition temperature of methane. A concept developed by The University of Newcastle using ionic liquids can selectively absorb methane from ventilation air below 100°C. The process operates approximately 500°C below the autoignition temperature of methane, completely eliminating the risk of a mine fire caused by an abatement system. The ionic liquid looping process would produce a concentrated methane stream that could be utilised for power or heat. Hence VAM would be converted to carbon dioxide, reducing greenhouse gas emissions from the mining activities. The captured methane would be sufficient to provide the energy required for the process and therefore there would be no increase in the consumption of electricity for the process.

The principal vision of this project was to carry out fundamental investigations into the chemistry of ionic liquids and low-concentration methane mixtures and develop a proof-of-concept process for the absorption and desorption of methane using ionic liquids. To fulfil the above vision, the following objectives were defined:

  • Determine the effect of temperature on methane solubility and selectivity;
  • Determine the effect of pressure on methane solubility and selectivity;
  • Determine the optimal ionic liquid properties for the absorption of methane from low-concentration methane-air mixtures;
  • Determine the effect of temperature and pressure on the desorption rate of methane from ionic liquids;
  • Evaluate the performance of ionic liquids and undertake a preliminary feasibility assessment;
  • Report the key findings and provide recommendations for advancing the next phases of the program of study.

The key findings for the project were:

  • Methane absorption decreased with increasing ionic liquid molecular mass;
  • Gas absorption decreases with increasing temperature;
  • Gas absorption occurs at low pressures and increases with increasing pressure;
  • The absorption process is reversible when desorption occurs at moderate temperatures;
  • Methane is selectively absorbed from air at low concentrations, at selectivities greater than predicted ideal selectivities;
  • Overall assessment: from a technical standpoint the absorption of VAM using ionic liquids is quite feasible.

Translating the findings of this project to a practical unit for VAM abatement requires further examination of the process at laboratory- and pilot-scales under a continuous mode of operation. Such examinations are a key step in the transition from the fundamental chemistry investigations already completed in this project to the demonstration of the process in an appropriate absorption technology.

This project identified that the absorption process is not solely governed by the ionic liquid chemical properties and the ionic liquid physical properties and process conditions influence the quantity of methane absorbed. Given the scale dependency of process conditions, the investigations necessary to elucidate the mass transfer mechanisms and the key process variables must be conducted at laboratory- and pilot-scale. Packed beds were identified as the most suitable technology for gas absorption in ionic liquids. Specifically, rotating packed beds have shown to increase mass transfer rates by an order of magnitude compared with conventional packed beds. Given the high gas flow rates of ventilation air from underground coal mines, a high mass transfer rate is likely to be necessary for the absorption of VAM.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C26061The Young’S Moduli, Poisson’S Ratios And Poroelastic Coefficients Of Coals

This report describes the measurement of coal (and rock) properties ...

C24015 Assessment Of Convergence Based Roof Support Design For Longwall Abutment Loads

The aim of Stage two of project C24015 was to develop a roof support...

C25072New Approaches To Mine Gas Analysis And Ratios

The spontaneous combustion of coal remains a hazard in underground c...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C26022Real-Time Prediction Of Coal Top Through Guided Borehole Radar Wave Imaging For Open Cut Blast-Hole Drilling

Damage to the tops of coal seams caused by incorrect blast stand-off...

C26027Using An Ecotoxicological Approach To Validate The DGT Technique For The Measurement Of Bioavailable Metal Concentrations

This project builds on the opportunity identified through Project C2...

C25039Prediction Of Long-Term Salt Generation From Coal Spoils

The release of salts from spoil piles has the potential to affect su...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C250083D Flotation Of Fine Particles

In this project a process for the continuous, selective agglomeratio...

C20052Full Scale Gravity - Desliming Using Cascading REFLUX Classifiers

Considerable quantities of fine coal are disposed of as part of the ...

C26007 Revised Dustiness And DEM Test Method (Update Of AS4156.6) Part 2:Preparation

In 2015 project C23054 investigated and reviewed the Australian Stan...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C25045Stage Two - Assessment Of In Situ High-Temperature Strength Of Cokes

Stage I of this project established a reliable and repeatable proces...

C27003Review Of ACARP Research To Support Marketing Of Australian Thermal Coal

In this project, researchers pinpointed issues relating to the use o...

C25044Trace Elements In Coal; Status Of Test Methods In Use And Their Applicability

 STAGE 1 REPORT

The key objectives of this stage...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C27008Selective Absorption Of Methane By Ionic Liquids

The connection of a ventilation air methane (VAM) abatement plant di...

C24061Proof-Of-Concept Photocatalytic Destruction Of Methane For Coal Mining Fugitive Emissions Abatement

Australia's fugitive emissions in 2015 were 41 Mt CO2-e (representin...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement - Phase 3

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC