Open Cut

Real-time Prediction of Coal Top Through Guided Borehole Radar Wave Imaging for Open Cut Blast-hole Drilling

Open Cut » Drilling & Blasting

Published: February 19Project Number: C26022

Get ReportAuthor: Binzhong Zhou and Matthew van de Werken | CSIRO

Damage to the tops of coal seams caused by incorrect blast stand-off distances is a serious issue for the Australian coal industry. It results in coal losses of up to 10-15%, translating to ~40 million tonnes of lost coal per year. To date, there have been no effective and economically-sound techniques developed that map and characterise coal seam structures in the open cut environment to remedy this issue.

In this project, we used a new forward-looking imaging technique based on the borehole radar (BHR) technology to predict the coal seam top in real-time, while drilling blast-holes, to reduce coal top damage and subsequent loss of product. The method uses a conventional BHR with a dipole antenna, which can image sideways around the borehole, electrically coupled to a conductive wire or steel drill-rod to induce a guided wave along the axial drill-rod. The drill-rod ahead of the BHR becomes part of the radiating antenna. The guided wave travels to the end of the drill-bit when some energy is reflected back and the remainder radiates from the drill bit. The radiated energy is reflected by geological discontinuities such as the top of the coal, and is recorded by the BHR. These reflected guided-waves present themselves as obliquely striped patterns or forward-looking events in BHR profiles. These forward-looking events can be used to predict the coal top ahead of the drill bit. This provides potential for a conventional BHR to image ahead of the drill-bit by integrating the BHR with the steel drill string.

This project investigated the feasibility of the proposed guided BHR wave imaging technique for prediction of the coal top under typical open cut environments. This is achieved through both numerical modelling and field trials.

Numerical modelling investigation is focused on the feasibility of top coal prediction using guided BHR waves as well as various factors such as overburden resistivity, waveguide length and borehole size, which may affect the ability of predicting the coal seam top through the guided BHR wave imaging. The modelling results suggest:

  • A conventional BHR can be electrically coupled onto a conductive wire or steel drill-rod to induce a guided wave along the axial drill-rod;
  • The drill-rod ahead of the BHR becomes part of the forward-looking antenna;
  • Forward-looking events are relatively weak compared with the direct arrivals but can be enhanced by suppressing the direct arrivals and used for estimation of the coal seam tops ahead of a drill-bit;
  • The prediction error is less than 10 cm, significantly better than the 30 cm required by the industry;
  • The forward-looking capability of the BHR is about 4 - 6 m based on the modelled data;
  • Conductivity of the overburden is the most important factor affecting the ability to see the coal seam top ahead of the drill bit;
  • Coal seam thickness variation does not affect the prediction of the coal seam top.

The numerical modelling confirms that guided BHR waves could be used for coal top prediction during blast-hole drilling providing the overburden is relatively resistive (the average resistivity should be higher than 80 ohmm).

Field tests clearly demonstrate that guided BHR waves could be observed and used for top of coal prediction during blast-hole drilling even in relatively conductive environments where the prediction ahead of the drill-bit > 2 m required by the industry. However, no useful guided BHR waves are observed at the other two mines due to their very conductive ground. These results are consistent with the numerical modelling results.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C26061The Young’S Moduli, Poisson’S Ratios And Poroelastic Coefficients Of Coals

This report describes the measurement of coal (and rock) properties ...

C24015 Assessment Of Convergence Based Roof Support Design For Longwall Abutment Loads

The aim of Stage two of project C24015 was to develop a roof support...

C25072New Approaches To Mine Gas Analysis And Ratios

The spontaneous combustion of coal remains a hazard in underground c...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C26022Real-Time Prediction Of Coal Top Through Guided Borehole Radar Wave Imaging For Open Cut Blast-Hole Drilling

Damage to the tops of coal seams caused by incorrect blast stand-off...

C26027Using An Ecotoxicological Approach To Validate The DGT Technique For The Measurement Of Bioavailable Metal Concentrations

This project builds on the opportunity identified through Project C2...

C25039Prediction Of Long-Term Salt Generation From Coal Spoils

The release of salts from spoil piles has the potential to affect su...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C250083D Flotation Of Fine Particles

In this project a process for the continuous, selective agglomeratio...

C20052Full Scale Gravity - Desliming Using Cascading REFLUX Classifiers

Considerable quantities of fine coal are disposed of as part of the ...

C26007 Revised Dustiness And DEM Test Method (Update Of AS4156.6) Part 2:Preparation

In 2015 project C23054 investigated and reviewed the Australian Stan...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C25045Stage Two - Assessment Of In Situ High-Temperature Strength Of Cokes

Stage I of this project established a reliable and repeatable proces...

C27003Review Of ACARP Research To Support Marketing Of Australian Thermal Coal

In this project, researchers pinpointed issues relating to the use o...

C25044Trace Elements In Coal; Status Of Test Methods In Use And Their Applicability


The key objectives of this stage...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C27008Selective Absorption Of Methane By Ionic Liquids

The connection of a ventilation air methane (VAM) abatement plant di...

C24061Proof-Of-Concept Photocatalytic Destruction Of Methane For Coal Mining Fugitive Emissions Abatement

Australia's fugitive emissions in 2015 were 41 Mt CO2-e (representin...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement - Phase 3

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook