Technical Market Support

Using High Range Mass Spectrometry to Study the Link Between Coal Structure, Coke Strength and Thermoplastic Chemistry in Blends

Technical Market Support » Metallurgical Coal

Published: April 18Project Number: C25046

Get ReportAuthor: Rohan Stanger, Quang Anh Tran, Andrew Stanger, Wei Xie, Michael Stockenhuber, Eric Kennedy, John Lucas, Jianglong Yu, Merrick Mahoney, Terry Wall | The University of Newcastle

This project investigated the use of Laser Desorption/Ionisation time of flight mass spectrometry (LDI-TOF-MS) as a tool for measuring molecular weight changes occurring during the development of thermoplasticity in a suite of industrial coking coals.

The study indicates that the technique provides novel and new coal characterisation options for

coking coals, whereby:

  • Peak molecular weight and MALDI signal intensity in raw coal and semi-cokes was related to coal rank and fluid properties; providing a molecular basis for characterising coals;
  • Solvent extractable “fluid phase” compounds are ranked on MALDI signal intensity, peak molecular weight, number of compounds of MALDI identified molecular groups and low boiling point volatiles by TGA; and
  • The Plastic Layer in simulated coke oven heated samples was found to correspond with the highest MALDI signal intensity across coal/plastic layer/semi coke regions. It was found that this value did not correspond with trends in standard fluidity measurements. This indicated that fluid properties in a coke oven may differ to those determined in a Geiseler fluidity test. Differences in the ratio of Low and High range molecules (below and above 2000Da) at this maximum fluidity point and the raw coal showed no clear trend and may be a coal specific process.

It is widely acknowledged that coal pyrolysis chemistry acts as a driver for the fluid properties produced when coked. However, the challenging nature of each coals structural complexity as it decomposes has remained a barrier to more fundamental understanding and greater optimisation in blending. MALDI has been a high range molecular tool for protein identification in biotechnology and for studying polymer behaviour. The use of LDI-TOF-MS (without a matrix) has only recently been found suitable for detecting the high range molecules found in coal and formed during coking.

Five coal samples were selected based on fluidity (40-2000ddpm) and coke strength. Of this suite, two coals were considered as (i) high strength + high fluidity, two coals were considered as (ii) high strength + low fluidity and one coal was considered as (iii) low strength + medium fluidity. Each coal was heated under conditions and temperatures associated with fluid development (softening, maximum fluidity and resolidification). These “fluid range” semi-cokes were either solvent extracted or analysed directly as a solid sample. Solvent extracts ranged up to 500Da for acetone soluble material and ~2000Da for THF soluble material. Pyridine extracts typically fell between these values. A peak molecular weight was observed in the extracts at ~350Da for all extract samples. By comparison, the solid samples ranged up to 7000Da in molecular size with peak molecular weight occurring between 1000-2000Da. This peak in the solid state was found to correspond with the relative rank of the coal with higher ranked coal showing higher peak molecular weight. The intensity of the LDI-TOF-MS signal for these solid samples was found to be related to the extent of the coals fluidity.

Both the solvent extracts and solid samples showed evidence of repeating peaks across the spectrum. Below 500Da, the solvent extracts showed repeating peaks every 12-14Da, while above this molecular size, both solvent extracts and the solid samples displayed evidence of repeating 24Da peaks. These findings led to the hypothesis that they represent monomeric units (below 500Da) and oligomers (+500Da, polymer fragments) that makes up the coal structure.

A novel dimensional heating experiment was optimised to simulate heating conditions similar to a coke oven. This produced a quenched composite sample containing raw coal/plastic layer/semicoke and was analysed by LDI-TOF-MS to track molecular changes in the plastic layer. This work found that the total LDI-TOF-MS signal became significantly higher during the plastic layer for all five coals. Molecular changes across the plastic layer indicated that more material was being generated during the plastic event and was typically above 1000Da in size.

A series of blending tests were performed on each sample type (solvent extract, solid state and dimensional heating) and in each case found evidence of molecular interaction-typically above 500Da in the extracts and 1000Da in solid samples.

This study has shown that broad molecular changes occur during coke making. It has uncovered a number of previously unobserved phenomena and developed a series of potential indices to evaluate coking coals for technical marketing. The number of coal specific measurements made over the course of this work shows that coal thermoplasticity can develop across unique molecular pathways that are likely to be under-utilised. The use of LDI-TOF-MS to evaluate these molecular changes in coking coal blending provides a fundamental basis for understanding and optimising coal performance and value-in-use.

Specific areas of coking coal utilisation where LDI-TOF-MS may be of use are:

  • Characterising the plastic forming component of coking coals;
  • Rationalising differences between standard fluid properties and those occurring in a coke oven;
  • Providing molecular understanding of blending impacts and aiding in blend design;
  • Developing a greater understanding of fundamental pyrolysis chemistry of maceral constituents and development of coke strength;
  • Understanding molecular changes that lead to fluidity decay over the coal supply chain from freshly mined, after washing and through the shipping process;
  • As an alternative assessment of fluidity.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C21013Improving Cavity Prediction On Longwall Faces Through A Combination Of Reliable Convergence, Canopy Attitude And Leg Pressure Monitoring

Most Australian coal mines have shield leg pressure monitoring in real t...

C24014Distributed Acoustic Conveyor Monitoring

CRC Mining have investigated the application of fibre optic Distribu...

C25054Distributed Acoustic Conveyor Monitoring - Phase 2

This project is phase 2 of the distributed acoustic sensing project ...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C23053A Study Of Sustainability And Profitability Of Grazing On Mine Rehabilitated Land In The Upper Hunter NSW

This study was initiated by the Upper Hunter Mining Dialogue (UHMD) ...

C25035Coal Subsurface Mapping For Open Cut Selective Mining

A reliable coal seam sensing system is required to improve the produ...

C24030Verification Of The Vertical Distribution Of Dust From Mining Activities

Advanced Environmental Dynamics has undertaken a two year project in...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26007 Revised Dustiness And DEM Test Method (Update Of AS4156.6) Part 2:Preparation

In 2015 project C23054 investigated and reviewed the Australian Stan...

C22033Advanced Control And Optimisation Of DMC Operation

The objective of this project was to develop, implement and demonstr...

C24045Adaptation Of Coal Grain Analysis To Improve Flotation Yield Estimation

Yield estimation from resource data is notoriously difficult. Facto...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C25042Mechanistic Model Of Coke Development In A Coke Oven Situation

The standard approach to evaluate the potential of coals or blends t...

C25050Overview Of Outcomes Of Research Supported By ACARP And NERDDC On The Utilisation Of Coking Coals, 1978-2014

The Australian coal industry has funded a substantial body of work o...

C25046Using High Range Mass Spectrometry To Study The Link Between Coal Structure, Coke Strength And Thermoplastic Chemistry In Blends

This project investigated the use of Laser Desorption/Ionisation tim...

Technical Market Support

Mine Site Greenhouse Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C24061Proof-Of-Concept Photocatalytic Destruction Of Methane For Coal Mining Fugitive Emissions Abatement

Australia's fugitive emissions in 2015 were 41 Mt CO2-e (representin...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement - Phase 3

This multi‐phase project is concerned with the mitigation of m...

C19054VAM Enrichment With A Two-Stage Adsorption Process

Treatment of ventilation air methane (VAM) with cost-effective technolog...

Mine Site Greenhouse Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook