Technical Market Support

The Strength of Interfaces in Metallurgical Coke and its Influence on Coke Abrasion

Technical Market Support » Metallurgical Coal

Published: September 17Project Number: C25043

Get ReportAuthor: Hannah Lomas, Richard Roest, Merrick Mahoney, Adam Wells, Russell Stuart, Richard Sakurovs, Zhengyi Jiang and Hui Wu | The University of Newcastle, CSIRO & The University of Wollonong

This project applied tribological and scratch testing techniques to metallurgical coke samples to determine:

  • The abrasive strengths of the coke textural constituents; and
  • The strength of the interfaces between the inertinite maceral derived components (IMDC) and the reactive maceral derived components (RMDC), as a function of the properties of the parent coal(s).

These parameters were quantified via the application of advanced microscopy techniques and then related to fundamental coal properties, including rank, measure, petrographic composition, and grind characteristics.

During tribological testing, a stationary pin or ball indenter is under a controlled load in contact with a rotating polished block of the material being tested. The wear track is then analysed to determine the degree and nature of the damage to the surface. The wear that occurs in rotational tribology tests is due to the progressive loss of surface material at the points at which the two surfaces (the polished block and the indenter) come into contact as they rub against each other.

One of the key measurements that can be obtained from tribological testing is the coefficient of friction (COF). The frictional force between two opposing surfaces, i.e. the polished coke block and the indenter, shows their resistance to relative motion, and indicates the susceptibility of the coke to tribological wear. A COF value of zero indicates a frictionless surface. The higher the COF, the greater the efficiency in transferring mechanical energy to the coke that can weaken or break it up.

The key outcomes of this project are:

  • The coefficient of friction (COF) was contrasted between cokes of different coal origin. The amount of ultrafine material produced by the cokes during continuous rotational tribological testing increased as the rank of the parent coal or coal blend increased. We hypothesise that these ultrafines are mostly graphitic in nature. Importantly, the COF for the coke samples from coals with a mean maximum vitrinite reflectance above or equal to 1.38% began to decrease slightly beyond the first 60 seconds of testing, whereas it continued to increase for the remainder of the cokes tested. We speculate that this reduction in COF is due to the graphitic ultrafines acting as a lubricant. By acting as a lubricant, these graphitic ultrafines would change the nature of coke surface as the tribological test progresses.
  • The peaks of acoustic emission profiles generated during coke scratch testing were linked, via their relationship with frictional force, to the energy release, dispersal or absorption on coke fracture. Characterisation of the acoustic emission peaks led to the identification of four distinct “signatures” which were used to classify these peaks primarily by their relationship with frictional force.
  • A robust quantitative approach was developed to link the acoustic emissions to the texture or textural interface at which they occurred, the main mechanism of damage at that location, the severity of the damage, and the loading force. This was achieved via the application of high resolution microscopy techniques, including scanning electron microscopy, 3D laser scanning microscopy, petrographic imaging, and optical microscopy.

The strength attributes of cokes were related to coal properties, demonstrating that tribological and scratch testing techniques can be used to distinguish between cokes of different coal origin. The key findings are:

  • IMDC abrasion is insensitive to parent coal rank.
  • RMDC abrasion is sensitive to parent coal rank.
  • RMDC fracture mechanisms are insensitive to parent coal petrographic composition.
  • Sole-heated oven cokes provide a reasonable analogue to pilot-scale oven cokes. They showed slightly more damage in tribological and scratch tests.
  • Coal blending was found in most circumstances to produce stronger RMDC-IMDC interfaces than were obtained in the cokes formed from the constituent single coals.
  • Tribological and scratch test results replicated the different dependence of coke strength (measured by tumble drum indices) on IRF grind observed between high rank Moranbah and Rangal coals in previous ACARP studies, providing a potential new probe to understand the reasons behind the effect.

The next step would be to use these findings to identify a path to help improve coke strength prediction and coke resistance to abrasion in the blast furnace. This would help to improve the accuracy of models used by the coal technical marketing industry to predict the value of their coal and coke products.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C27052Site Trial And Demonstration Of Integrated Forward And Reverse Osmosis For Mine Water Reuse

The forward osmosis (FO) process, also known as direct osmosis, is a...

C28022Development Of A Simple Rotary Steerable System For Underground Inseam Drilling

The purpose of this project was to complete the design and testing o...

C21002Measurement And Reporting Of Fugitive Emissions From Underground Coal Mines

The National Greenhouse and Energy Reporting Act 2007 (Act), the ...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C28034Mining Equipment Human Factors Design For Workforce Diversity

The objectives of the project were to:

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27025Quantifying The Step-Change Benefit Of Reflux Flotation Cell Circuits

The objective of this project was to quantify the value proposition ...

C24047Characterisation Of Pressure (Hyperbaric) Filter Performance

Hyperbaric disc filter technology has been used to dewater fine coal...

C28058Phase Two Development Of A Low Cost Online Measurement Of Particle Size And Density For Diagnostics Across The Fine Coal Circuit (Particle Profiler)

This project is based around the development of a prototype system (...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook