Technical Market Support

Physical and Chemical Interactions Occurring During Coke Making and their Influence on Coke Strength

Technical Market Support » Metallurgical Coal

Published: October 16Project Number: C24055

Get ReportAuthor: Karen Steel, Robin Dawson, Wei Xie, Rohan Stanger, Terry Wall and Merrick Mahoney | The University of Queensland, The University of Newcastle

This project contains a study on the interactions occurring between coal macerals from single coals and between the macerals from different coals in blends. The goal was to detect interactions and to determine their nature, i.e. whether they occur through physical or chemical mechanisms. To achieve this goal we combined a number of tools. We used rheometry to characterise the viscoelastic properties, thermogravimetric analysis (TGA) to obtain total volatile release behaviour, and Dynamic Elemental Thermal Analysis (DETA) to obtain the volatile release behaviour of Carbon and Hydrogen. To study interactions we took the approach of firstly characterising the pure components. The predicted behaviour of those pure components in blends was then calculated using common additive rules. The predictions assume no interactions are occurring. We then compared the predictions to actual measured results for the blends. Any deviation between predicted and actual results indicated an interaction and from the nature of the deviation we attempted to deduce the nature of the interaction, i.e. whether the deviation could be explained by a physical or chemical mechanism. To study interactions between macerals we firstly produced maceral concentrates using a reflux classifier. We studied maceral interactions for three coals and we studied interactions occurring in 3 coal blend sets.


For the maceral interactions study, it is hypothesised that inertinite plays an important role in volatile release behaviour and this has a number of important effects. More specifically, it is proposed that inertinite can either trap or aid volatile release which affects the driving force for liquid evaporation and leads to either an increase or decrease in the amount of liquid, respectively. An increase or decrease in the amount of liquid will decrease or increase the viscosity of the melt, and the viscosity of the melt controls bubble growth and coalescence behaviour. At the two extremes, if viscosity is very high, bubble nucleation and growth do not occur which means that adhesion will not occur. If viscosity is too low, excessive pore wall thinning occurs. Therefore, it is proposed that inertinite may indirectly influence adhesion and pore structure for a given coal in either a positive or negative way. This interaction has been labelled a Type 5 interaction. It is speculated that the pore properties of the inertinite may dictate whether these events occur, and that pore properties of the inertinite can change during carbonisation as they themselves devolatilise. It is also proposed that inertinite can trap liquid matter in its porous structure, which can aid the bonding of inertinite with the melt.


For the blends, enhanced volatile release was also observed, which resulted in reduced expansion and improved strength. The improved strength may have been due to improved pore structure resulting from the reduced expansion. The DETA tests for the blends revealed the carbon yield to be lower than expected which may suggest that enhanced volatile release also results in an overall greater loss of carbon from the solid to the vapour phase. This may be an important area of study if cokemakers are trying to maximize the conversion of carbon into coke for economic and environmental reasons.


It follows that a greater understanding of the factors controlling volatile mass transfer could provide unique insights into coking behaviour from which a more complete understanding of the factors controlling adhesion and pore structure development could be gained. There is still a significant lack of knowledge on the behaviour of inertinite during coking and the extent that inertinite is detrimental or advantageous leading to the ideal level of inertinite in a coal product. Such knowledge would be useful for preparing coals with maximum value for the market.


This project did provide some fundamental insights into the effect of particle size on volatile mass transfer and led to an improvement in our approaches for studying these system, involving increasing sample size for thermogravimetric studies.


This study did not find strong signs of chemical interactions. Increasing the number of coals in the study is necessary to confirm their occurrence.


The main recommendation for further work is to continue studying interactions between macerals by mixing the inertinite rich fraction from one coal with vitrinite rich fractions from various different coals to see whether it shows common behaviour that can be directly attributed to its properties. The properties of the inertinite also needs to be obtained, in particular, its surface and pore properties (size and connectivity). Such a study should elucidate the extent that inertinite is able to prevent or aid volatile release behaviour.


This research feeds directly into the development of a fundamental mechanistic model of coke strength development. It is envisaged that it will be used to devise better models to predict strength and elucidate ways to improve the performance of a particular coal during coking, and hence improve its market acceptance. Therefore, this research is expected to provide both short-term and long-term gains.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C27052Site Trial And Demonstration Of Integrated Forward And Reverse Osmosis For Mine Water Reuse

The forward osmosis (FO) process, also known as direct osmosis, is a...

C28022Development Of A Simple Rotary Steerable System For Underground Inseam Drilling

The purpose of this project was to complete the design and testing o...

C21002Measurement And Reporting Of Fugitive Emissions From Underground Coal Mines

The National Greenhouse and Energy Reporting Act 2007 (Act), the ...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C28034Mining Equipment Human Factors Design For Workforce Diversity

The objectives of the project were to:

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27025Quantifying The Step-Change Benefit Of Reflux Flotation Cell Circuits

The objective of this project was to quantify the value proposition ...

C24047Characterisation Of Pressure (Hyperbaric) Filter Performance

Hyperbaric disc filter technology has been used to dewater fine coal...

C28058Phase Two Development Of A Low Cost Online Measurement Of Particle Size And Density For Diagnostics Across The Fine Coal Circuit (Particle Profiler)

This project is based around the development of a prototype system (...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook