Open Cut

Automated Bulk Dozer Push - Reducing the Cost of Overburden Removal

Open Cut » Overburden Removal

Published: October 17Project Number: C24037

Get ReportAuthor: Ross McAree, Richard Hensel, Zane Smith | The University of Queensland

Caterpillar Command for Dozing is a Semi-Autonomous Tractor System for D11T dozers that can perform bulk dozing. The first deployment of this technology was at Black Thunder Coal Mine in Wyoming where it was demonstrated to be capable of executing push-to-an-edge bulk dozing as part of a dragline strip mining project.


This report describes collaborative research undertaken by the University of Queensland and Caterpillar to extend Caterpillar Command for Dozing so that is capable of pivot-push dozing.


The report is framed against the context of the need to understand how to best choreograph the sequence of cuts, pushes, and dumps performed by an autonomous dozer for bulk move pivot push dozing so that the material moved by the is dozer is moved as efficiently as possible. Difference in opinion among operations about how best to pivot push exists and this report looks to shed some light on this question, accepting that in different circumstances different methods might be preferred.


The report describes the common variants of pivot push dozing in use in the Australian coal sector and presents a software framework developed to simulate pivot push dozing operation. This framework takes as its input a pit geometry determined by aerial survey, the characteristics of the material to be pushed, and the attributes of the bulldozer machinery. The framework simulates the movement of material under the action of a dozer and computes a push sequence for efficient material movement.


This simulation framework allows, among other things, an expected effective-time productivity trajectory for the push to be computed which gives the volumetric rate at which material is moved to prime. The simulation framework is validated using experimental data collected for a manual push operation. Computed productivities are shown to match well to actual productivities determined by volumetric measurements obtained by aerial survey.


The question of which pivot push method makes best use of the effective dozer time is explored through the simulation framework. The report gives comparative productivity results for three pivot push variants in current use across Australian mines. Results indicate the preferred method for pivot push dozing should be to tip-head till the void is levelled followed by either back-stacking or tip-heading the remaining material uphill. The report goes on to explore how well the semi-autonomous dozer technology performs. The metric used for evaluation is the effective time productivity (ETP): the cumulative volume of overburden moved to locations beyond the pivot-point as a function of time the bulldozer spends in effective operation. Predictions of expected ETP computed by the simulation framework provide a reference against which actual dozer productivity can be evaluated for a specific overburden profile and material properties. The report compares the measured ETP acheived by the semi-autonomous technology at the time of its initial deployment and then again after six months following further technical development. The initial productivity trial was undertaken at a time when operators were still in process of learning how to use the system. This initial trial showed the semi-autonomous technology achieved 85% of expected ETP. Reasons for the gap between expected and actual operation were identified and addressed. These included operator familiarity with the technology as well as technology improvements to address identified issues.


A second productivity trial conducted after improvement to the system showed the semi-autonomous technology has an ETP similar to that for manual operation.


The project has demonstrated that semi-autonomous pivot-push dozing in technically feasible and its productivity can match manual operation.


The significance of this work to the Australian coal industry is in supporting the realization of technology for semiautonomous pivot push operations and also in providing methods for evaluating the effectiveness of those operations.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook