ACARP ACARP ACARP ACARP
Underground

Shear Testing of the Major Australian Cable Bolts Under Different Pretension Loads

Underground » Strata Control and Windblasts

Published: December 17Project Number: C24012

Get ReportAuthor: Naj Aziz, Jan Namcik, Muhammad Hadi, Alex Remennikov, Duncan Best, Travis Marshall, Colin Devenish, Haleh Rasekh, Guanyu Yang ,Saman Khaleghparast and Xuwei Li, Ali Mirzaghorbanali, Alan Grant and Owen Rink | University of Wollongong, University of Southern Queensland and Megabolt

This report deals with shear testing of the major Australian cable bolt types using the Megabolt Integrated Single Shear Testing Rig (MISSTR). The MISSTR apparatus was selected to determine the cable shear strength values and to evaluate the debonding characteristics of various profiled cable bolt strand wires during shearing with respect to wire surface roughness. The optimum debonding length of the cable during cable shearing failure was determined by appropriate instrumentation.

The study examined both the shear behaviour and the failure mechanism of various cable bolts of different designs and constructions under zero and 15 t pretension loads, although some cables were also tested at other pretension loads in 40 MPa concrete cylinders using Stratabinder grout. The use of 40 MPa concrete and stratabinder grout was to complement the pull testing ACARP Project (C22010) undertaken at the School of Mines, UNSW. While attention to the strength of cable bolt was generally focused on the tensile strength, very little attention has been given to the cable bolt strength in shear. Ironically, failure in shear represents one of the most important aspects of the cable bolt integrity. Rock bed sagging and horizontal stresses cause shearing along fracture planes as well as along bedding planes, thereby placing shear forces on the cable. In some cases, the combined tensile and shear forces are sufficient to cause failure of cable bolts as experienced and reported from numerous mines.

The project was a laboratory based testing programme together with analysis of the field data supposedly from various mines with active shear testing studies. This was proven to be not the case and thus no field study results were provided and hence no analysis was undertaken. The duration of the study was over a period of 24 months. The study included plain and rough surface wire strands and indented and spiral strands in bulbed and un-bulbed cables. Other issues examined include cable bolt rotation during shearing and the contribution of the sheared concrete joint surfaces to the total cable bolt shearing stress and suitability of cable types installed in varying roof strata formations.

Various parameters considered included, cable type, grout type, hole size, and hole rifling, concrete confinement and cable tensioning, rate of shear loading and location of cable bulbs with respect to test block length. This project was part of a joint programme of study funded by ACARP and looked at both the cable load transfer capacity evaluation by pull testing (ACARP project C21010), undertaken at the School of Mines, UNSW and the shear strength characterisation of various Australian market cables (ACARP project C24012). The dual study was considered to lead to better outcomes in understanding load transfer mechanism by pull testing and shearing characteristics of the tested cable bolt under different test conditions.

The project had the support from the coal mining industry as well as manufacturers and suppliers of cable bolts and resin/grouts. A total sum of $389 600 000 was sought from ACARP to fund this labour intensive project. This project is likely to lead to the establishment of an Australian standard method of testing cable bolts in shear. The main findings from this study were:

  • MISSTR was a correct method of evaluating the shear properties of various cable bolts. The methodology enabled researchers to shed light on the effectiveness of cable installation bonding. Plain cables were found to debond much more readily in comparison with rough /indented cables for a given cable encapsulation length.
  • No debonding was observed in spiral and indented cable bolts because of the influence of increased interlocking in the cable/grout interface.
  • The failure modes in cable bolt strand wires were mostly a combination of pure tensile and tensile/shear. No strand wires failed in pure shear. Shear testing of the cable bolt will be unlikely achieved in full shear because of the relatively low strength properties of the host medium, resulting in excessive wires bending and elongating around the sheared zone, leading to near tensile shear failure.
  • In general, the failed cable strand peak shear load was lower with increased pretension load. Higher pretension load causes the cable to stiffen and fail with lower vertical shear displacement.
  • Modelling simulation demonstrated that the finite difference based FLAC software is capable of simulating underground roadway stability, supported by both rock bolts and cable bolts. The large scale horizontal deformation on cable bolt elements as experienced in the field was captured by the model. The simulation was limited to two dimensional analyses. It is recommended to carry out a comprehensive numerical study in three dimensions to classify the most optimum support system for various strata conditions.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC