ACARP ACARP ACARP ACARP
Open Cut

Improved Blast Outcomes

Open Cut » Drilling & Blasting

Published: December 15Project Number: C23028

Get ReportAuthor: Peter Dean, Marc Elmouttie, George Poropat, Sarma Kanchibotla, Mark Jones, Alan Cocker & Anand Musunuri | CSIRO, Julius Kruttschnitt Mineral Research Centre

The objective of the ACARP C23028 Improved Blast Outcomes project was to develop a methodology for drill and blast engineers to improve blast safety and performance by more accurately accounting for rock mass structure in their blast designs. This work involved integration of the blast energy and fragmentation technology and expertise developed at the SMI with the structural mapping and modelling technology and expertise developed at the CSIRO. This project would deliver:

· Improved prediction and management of blast related hazards, such as face-bursts; and

· Improved blast-induced fragmentation through better blast design based on more accurate representation of rock mass structures in blast analysis software.

 

For the assessment of blast design efficiency and identification of potential hazards such as face bursts, a multi-criteria approach has been adopted. The tool developed in this project allows the practitioner to take into account several aspects of blast design and performance:

· Face burden;

· Energy intensity prediction (a function of face burden, explosive energy and timing);

· Structural connectivity;

· Fracture intensity and

· Domain index.

 

The face burden metric incorporates the location of the front row of the design in relation to the surveyed topography of the highwall.

 

The energy intensity calculation uses topography of the highwall and calculates the blast energy at this location using the elemental charge approach developed at the SMI. This approach takes into account the distance of actual location from the explosive charge, explosive energy intensity ant the detonation timing of holes.

 

The structural connectivity examines the connection pathways between rock mass defects identified in the structural data and the blast design.

 

The fracture intensity (total fracture length per area) can also be included in this analysis.

 

Finally, a domain index can be provided by the user to characterise rock mass properties not captured in the above criteria.

 

The tool allows the user to perform the multi-criteria evaluation using the above and a 'colour map' visualisation is generated. Regions identified in this map with either high or low values can be interpreted within the context of the analysis as representing energy intensity or potential for face-burst that may result in air blast and / or fly rock.

 

Another function of this tool is to provide an improved estimate of blast induced fragmentation based on in-situ size distribution, energy intensity and breakage characteristics of the rock mass. The in-situ size distribution can be estimated by the tool using the structural mappings. This estimation involves calculation of both the volumetric joint count and, if sufficient data is available, the polyhedral volume estimation. The tool will then estimate post-blast fragmentation using this in-situ estimate and the energy at that point using a comminution based approach. This calculation can be performed on a domain by domain basis thus allowing for the consideration of different rock types and rock qualities.

 

The initial technology transfer component of this project is being undertaken through a series of mine site visits and demonstrations. Discussions between the two collaborating institutions have commenced on the preferred commercialisation pathway for this software.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC