ACARP ACARP ACARP ACARP
Underground

Reducing Diesel Particulate Matter in Underground Mines by Optimising Design and Operation of Diesel Exhaust Systems

Underground » Health and Safety

Published: December 15Project Number: C23013

Get ReportAuthor: Varun Rao, Daya Dayawansa, and Damon Honnery | Monash University

Control of diesel particulate matter (DPM) in the underground coal mine environment is most often achieved by use of diesel particulate filters (DPFs). Although they are generally effective at filtering DPM, DPFs have been plagued by poor service life, resulting in costly and ineffective control of DPM. The MTI-Monash University team has been working on short-term and medium-term solutions to this problem through two ACARP projects as part of an overall DPM reduction roadmap for underground coal mines.

 

A previous project, ACARP C21017, identified water carry-over from the water scrubber component of the diesel exhaust system (DES) as the dominant cause of poor filter life. Results from the investigation showed that filters from Freudenberg Filtration Technologies (FFT) could be dried and re-used without compromising filter performance or integrity. Although this solution is inexpensive and simple to implement, a far better solution would be to achieve an extension of filter life without the need for removal and drying. There are two complementary approaches to achieve this increase in filter life: (i) modifying the DES to reduce the water carry-over, and (ii) modifying DPFs so that they are less affected by water. Both these approaches were investigated in the current project.

 

Water transport from the scrubber could be in the form of liquid droplets due to aerodynamic processes or water vapour through an evaporative process, requiring correspondingly different ways to mitigate the problem. Results from experimental investigations and theoretical modelling of the DES show the following:

· The main reason for excessive water transport from the scrubber is water evaporation, not droplets due to aerodynamic processes;

· Water retention in the filter canister is due to a temperature drop across the canister resulting in water condensation.

· Water condensation in the filter canister could be resolved by modifying the temperature distribution of the exhaust as it passes through the DES;

· Some modifications to modify the temperature distribution of the DES were trialled in this project and showed a significant reduction in water transport from the scrubber;

· Further work will be required to redesign the DES to achieve this outcome in a practical and safe manner;

· A diagnostic method using the ion current signal could indicate excessive DPM emissions.

 

There have been recent developments in new filter models available to mine sites since the initial MTI-Monash ACARP project, including the use of fibreglass filters supplied by Global Mining Supplies (GMS) that were anecdotally less affected by water, and Cosway C100a filters supplied by UnderGround Mining (UGM). The main drawbacks of the former were the relatively poor filtration efficiency for the greening-in period, and also concerns about the possibility of fibreglass particles being ejected from the medium. The filtration efficiency of the latter filters was not investigated in previous projects. In addition to these filters, Freudenberg Filtration Technologies (FFT) have also recently released improved long-life filters.

 

The MTI-Monash University team has developed a comprehensive roadmap for DPM reduction in underground coal mines. In the immediate short-term, results from ACARP projects C21017 and the current investigation have already offered savings to mine operators by increasing DPF life. As a result of the previous ACARP project, C21017, mine sites that operate FFT filters can re-use them up to 5 times by intermittent drying without compromising filter efficiency or integrity. The current project has also provided an assessment of the filtration performance of experimental long-life FFT filters, data that is crucial to the real-world reduction in ambient DPM from use of these filters. For mine sites where GMS filters are used, the current project has presented a detailed set of test results for filtration efficiency and service life, as well as an investigation of the likelihood of ejection of fibreglass particles from the filter medium. Mine sites that use Cosway C100a filters will be benefited by the experimental results of initial filtration efficiency.

 

Long term improvements can be achieved through a redesign of the DES, or through better diagnostic tools for measurement of DPM. Both these options are discussed in this report and are proposed as future work.

 

The three significant outcomes of this project are:

· Water vapour from evaporation in the scrubber has been identified as the dominant mechanism of water transport into the filter canister. Condensation of the water vapour occurs in the filter canister due to heat loss;

· A modification to prevent water condensation in the filter canister was trialled and has the potential to greatly increase filter service life; and

· A modified fibreglass diesel particulate filter with a high initial filtration efficiency and a long term filtration efficiency comparable to the polypropylene filters commonly used by mine sites was developed.

 

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C33029Review Longwall Face Ventilation To Mitigate Goaf Gas Emissions Onto Walkways And Tailgate End

As longwall mining increasingly targets deeper coal seams, managing ...

C29009Control Of Transient Touch Voltages During Switching

There have been an increasing number of electric shock incidents rep...

C29025Effectiveness Of Shotcrete In Underground Coal Mines

The primary objective of this project is to quantify the effectivene...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33036Radar Tyre Monitor System

This project focussed on trialling a radar sensing technology design...

C26020Preventing Fatigue Cracking Via Proactive Surface Dressing

Fatigue cracking of plant and equipment presents a significant chall...

C33046Rationale For The Use Of Paired Continuous Real Time Noise Monitors To Reduce Uncertainty In The Quantification Of Noise From Open Cut Coal Mines

Numerous experimental studies of varying duration have been undertak...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C34041A Coal Spiral For The 2020S

The objective of this project is to develop an enhanced coal process...

C33057Foreign Contaminants Detection On Conveyor Belts Using Digital Imaging Processing Techniques And Coal Penetrating Sensors

This project was initiated to tackle the ongoing issue of foreign co...

C29065Wash Plant Fines Testing Methods Enhancement

Accurately estimating the proportion of expected fine size material ...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C34054Scoping Study: Design Of Cokes From Biomass-Coal Blends For Sustainable Blast Furnace Ironmaking

There is an increasing focus on improving the environmental sustaina...

C34058Strength Development In Fouling Deposits

When coal is combusted in a boiler, the fly ash that is produced flo...

C34059Coke Reactivity With CO2 And H2O And Impacts On Coke Microstructure And Gas Diffusion

With the global shift to low-carbon ironmaking, partial substitution...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC