ACARP ACARP ACARP ACARP
Underground

Tow Force Measurement of Various Mining Equipment

Underground » Mining Technology and Production

Published: May 15Project Number: C23012

Get ReportAuthor: Daniel Carpenter | BMT WBM

Towing of heavy and light equipment is a vital part of coal mining and occurs regularly. The principle risks involved with the failure of towing components include:

· Uncontrolled release of energy when components fail:

o Safety Alert 156 Towing of Longwall chocks almost results in fatalities, 13th February 2007, Queensland department of Mines & Energy,

o MSHA report CAI-2003-24, Fatal powered haulage accident, September 9, 2003,

· Unplanned movements or loss of control when components fail:

o Safety Alert 217 Unplanned movement of towed equipment 9th January 2009, Queensland department of Mines & Energy.

 

In recent years there have been several incidents involving towing equipment resulting in the Department of Industry and Investment releasing Safety Bulletin SB09-03 Broken Pull Chain Results in Fatality on 23 September 2009 with the recommendation that all mines review their towing, pulling and snigging operations. Also in the recommendations is the requirement to consider 'potential impact forces on the towing system resulting from dynamic loading'.

 

The effect of dynamic loading is well understood for lifting applications and detailed in AS1418.1, however there appears to be very little guidance available to design engineers and equipment operators for towing applications. It is tempting to apply lifting equipment guidance to towing applications however some key differences exist between the applications such as: ·

· Dynamic loading occurs once for each normal lifting operation but occurs irregularly throughout a towing operation, thus the frequency of the dynamic loading is different;

· The magnitude of the dynamic effects (the 'dynamic amplification factor') may be quite different to lifting applications. Lifting applications generally involve only one significant moving object, attached to long (soft) couplings with precise speed control. In contrast, Towing applications can involve two heavy pieces of moving equipment connected by relatively short (stiff) couplings and with relatively poor speed control. Thus, the magnitude of dynamic effects is expected to be much larger for towing applications.

 

It would seem that it is possible for towing equipment to be subject to larger dynamic effects than lifting equipment for a potentially large, yet non-apparent, number of load cycles. Dynamic loading consumes the fatigue life of towing equipment so the towing application is expected to incur fatigue damage at a much greater rate than lifting applications. The description of the incident described in Safety Alert 217 indicates that fatigue failure of towing equipment can and has occurred.

 

Despite the differences, towing equipment is generally designed or specified based on commercially rated lifting equipment.

 

There in as increasing trend toward the use of towing 'strops' rather than chains. The strops are made from synthetic fibres and designed to fail without the release of energy. When they are overloaded, they break and fall on the ground without the dangerous recoil that chains exhibit. Strops are less stiff (stretchier) than chains, which, in theory at least, reduces the magnitude of dynamic loading effects. For this reason, strops will be tested alongside and compared with towing chains.

 

Over numerous years, BMT WBM staff has observed a large number of deformed tow hitches, pins and associated equipment. The same staff members have also received numerous requests to design and certify towing equipment.

 

Mining Design Guidelines (MDG-1 and MDG-15) states "The designed minimum factor of safety should be 2.5 times the maximum rated towable capacity of the towing equipment", although it doesn't state whether this should be applied to the gross section yielding (the onset of permanent deformation) or the ultimate strength. An even more conservative interpretation would be to use the value of 2.5 as the 'dynamic amplification factor' and adopt the normal lifting equipment design rules stated in AS 1418.

 

This purpose of this project was to:

· Measure typical towing forces using a strain gauge-based instrumentation and data logging equipment, for a range of machinery and towing equipment;

· Extract key variables from the measured data used for the design and specification of towing equipment including:

o dynamic amplification factor;

o equivalent full-load cycle frequency rate; and

o typical friction coefficients where applicable.

· Determine whether the minimum safety factor described in MDG1 and MDG15 should be applied to the ultimate strength, yield strength or be used as a dynamic amplification factor.

 

The intention is that data from this project will assist engineers design and/or specify suitable towing equipment and could feasibly be used for future development of the Mining Design Guidelines.

 

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC