Coal Preparation

Advanced Control and Optimisation of DMC Operation

Coal Preparation » Process Control

Published: June 18Project Number: C22033

Get ReportAuthor: Shenggen Hu | CSIRO

The objective of this project was to develop, implement and demonstrate a system that determines the optimal DMC cut‐point at which a target product ash and/or a given incremental ash can be achieved. The operation of dense medium cyclone (DMC) at the optimal cut‐point would reduce the amount of product with out‐of-specification ash and maximise the yield of a plant with multiple parallel beneficiation units.

The system combines online measurements of medium densities and DMC product yield with predictive models for on‐line determinations of the partition curve, the feed coal washability and the product ash and/or incremental ash. The partition curve and the plant feed washability are determined using methods developed in two previous projects (C13058, C20049). The system will help the control system to get the most out of limited measurements by determining the current cut‐point and predicting the optimal cut‐point.

Methods for predicting instantaneous ash curve for known and unknown coal sources were developed. A versatile empirical equation was developed for fitting any type of instantaneous ash curve. It was found that the averaged instantaneous ash curve from bore‐hole logs with weighted coefficients related to the seam thickness in each hole for a given seam or a seam mixture with a constant blending ratio has a sufficient accuracy for predictions of the product ash and the incremental ash, and this is valid even for coal feeds with intra‐seam or out‐of‐seam dilutions. It was also found that the washability curve from the bore‐hole logs is still useful for predicting the product ash in cases where the coal feed has a significant intra‐seam dilution from shale bands as long as the cut‐point is lower than 1.6RD.

The effects of errors in instantaneous ash curve on the predictions of the product ash and incremental ash have been thoroughly investigated using simulated cases. A ±1% error (absolute error) in the ash value at the density of 1.27RD on the instantaneous ash curve can cause about ±0.8% error (absolute error) in the predicted product ash value. Errors at the density of 1.65RD on the instantaneous ash curve have an insignificant impact on the prediction.

Results from plant‐based experiments indicated that the predicted product ash values were close to those from sampling and laboratory analysis for coal feeds from a mixture of seams or a single seam. The plant-based experimental results demonstrated that the method was effective in the simultaneous determination of the plant feed washability and the instantaneous ash curve through the perturbation of the correct medium density and accompanied by product sampling and rapid ash analysis. The method for determining the optimal cut‐point for a given product ash or incremental ash was successfully demonstrated in plant experimental cases.

The methods developed in this project are useful not only for online applications, but also for optimisation through sampling. Data from Marcy density gauge and rapid ash analysis are collected at three correct medium densities: i.e. current set‐point, +0.05RD higher and ‐0.05RD lower, and then used to estimate the instantaneous ash and the washability curves of unknown coal feed sources. Finally the cut‐point for the targeted product ash and/or incremental ash would be found.

The system and methods have considerable potential to add value to the Australian coal preparation industry by maximising the plant yield. Applications of the system and methods at mine sites require further improvements and integration of the system with existing plant systems. Development of an Excel Spreadsheet based program is also desirable for the optimisation through sampling.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C26061The Young’S Moduli, Poisson’S Ratios And Poroelastic Coefficients Of Coals

This report describes the measurement of coal (and rock) properties ...

C24015 Assessment Of Convergence Based Roof Support Design For Longwall Abutment Loads

The aim of Stage two of project C24015 was to develop a roof support...

C25072New Approaches To Mine Gas Analysis And Ratios

The spontaneous combustion of coal remains a hazard in underground c...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C26022Real-Time Prediction Of Coal Top Through Guided Borehole Radar Wave Imaging For Open Cut Blast-Hole Drilling

Damage to the tops of coal seams caused by incorrect blast stand-off...

C26027Using An Ecotoxicological Approach To Validate The DGT Technique For The Measurement Of Bioavailable Metal Concentrations

This project builds on the opportunity identified through Project C2...

C25039Prediction Of Long-Term Salt Generation From Coal Spoils

The release of salts from spoil piles has the potential to affect su...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C250083D Flotation Of Fine Particles

In this project a process for the continuous, selective agglomeratio...

C20052Full Scale Gravity - Desliming Using Cascading REFLUX Classifiers

Considerable quantities of fine coal are disposed of as part of the ...

C26007 Revised Dustiness And DEM Test Method (Update Of AS4156.6) Part 2:Preparation

In 2015 project C23054 investigated and reviewed the Australian Stan...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C25045Stage Two - Assessment Of In Situ High-Temperature Strength Of Cokes

Stage I of this project established a reliable and repeatable proces...

C27003Review Of ACARP Research To Support Marketing Of Australian Thermal Coal

In this project, researchers pinpointed issues relating to the use o...

C25044Trace Elements In Coal; Status Of Test Methods In Use And Their Applicability


The key objectives of this stage...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C27008Selective Absorption Of Methane By Ionic Liquids

The connection of a ventilation air methane (VAM) abatement plant di...

C24061Proof-Of-Concept Photocatalytic Destruction Of Methane For Coal Mining Fugitive Emissions Abatement

Australia's fugitive emissions in 2015 were 41 Mt CO2-e (representin...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement - Phase 3

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook