Open Cut

Energy Adsorption Capacity of Muck Piles and their Status as Engineered Hard Barriers

Open Cut » Geology

Published: February 17Project Number: C21032

Get ReportAuthor: Klaus Thoeni and Anna Giacomini | The University of Newcastle

Windrows or safety berms are used in mine sites to protect haul trucks from rolling over an edge and to avoid collisions. Their current design is based on rules of thumb and the behaviour of windrows in mining applications is still poorly understood. It is, however, well known that the problem is extremely complex. A first attempt in analysing this complexity was made in Stage 1 where full-scale experiments and reduced-scale laboratory testing were combined with a simplified numerical model, based on the Discrete Element Method (DEM), to determine the energy absorption capacity of berms.


The results of Stage 1 indicate that the height of the berms or windrows should not only be related to the size of the vehicle, but also to the velocity the vehicle is travelling when running into the windrow. In addition, they clearly showed the need for a more advanced numerical model, which allows considering the entire body of the haul truck. This is necessary because it was found that the truck body plays a crucial role when impacting in forward motion particularly at high velocity. Hence, a realistic model, where the haul truck and its dynamics are modelled using Multi Body Dynamics (MBD), is developed in Stage 2. The model of the haul truck is then coupled with the DEM model of the windrow to allow more realistic predictions.


An extensive numerical analysis based on five representative scenarios with various windrow geometries is carried out: The scenarios include: a reversing truck at moderate velocity (Scenario S1), head-on collision at high velocity (Scenario S2), collision at shallow approach angle (Scenario S3), collision at shallow approach angle on ramp (Scenario S4) and side-wise collision due to sliding/skidding (Scenario S5).


The numerical analysis clearly highlights that the width of the windrow is equally if not more important as its height. Hence, the width should be considered in the design. In addition, the research shows that the effectiveness of the windrow in stopping an ultra-class haul truck also depends on the approach direction and approach velocity. This suggests that the windrow geometry needs to be adapted according to the most likely or most critical scenario, e.g., windrows on ramps should be bigger than the one on even haul roads. The application of high risk bunds to specific areas is encouraged.


For each representative scenario, design charts indicating the required windrow geometry (height and width) are derived for various truck velocities. Higher and wider berms proof to be more efficient in all scenarios. Trapezoidal windrows should be preferred as they are generally more effective. The suggested design charts can be used to design windrows for a specific speed limit or to estimate the admissible velocity for specific windrow geometries.


The analysis of windrows with low batter angles (α = 20°) clearly shows that a low batter angle increases the risk of the truck climbing the berm and the truck driver not noticing that contact has been made. The analysis also suggested that the amount of material (mass and volume of the windrow) is crucial as it provides the main resistance to the impact especially at high velocities where the dynamics of the collision play a critical role. Increasing the width not only adds additional resistance, but it also provides more room for a bigger braking/stopping distance. The analysis with rigid windrows shows that only windrows with batter angles of α ≥ 40° can effectively redirect the truck.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook