ACARP ACARP ACARP ACARP
Underground

Standardised Subsidence Information Management System

Underground » Environment - Subsidence and Mine Water

Published: February 20Project Number: C20038

Get ReportAuthor: Gang Li, Robert Pâquet, John Perceval, Phil Steuart and Ray Ramage | NSW Department of Planning, Industry and Environment

As an empirically-based discipline of engineering/science, subsidence engineering and its related risk assessment/management practices rely on the nature, quality, quantity and extent of subsidence monitoring data and, importantly, how the collected data are organised so that it can be accurately and effectively utilised.

After eight years of persistent efforts by a team of professional subsidence, mining and IT engineers directly employed or engaged as consultants by the NSW Resources Regulator, the project has produced the following outcomes.

  • Establishment of a state-of-the-art web-based subsidence information resource called the “Standardised Subsidence Information Management System” (ie SSIMS).  The System comprises a Data Submission Portal, a Subsidence Database and a Data Query Portal, supported by modern IT technologies and robust architectural and database design measures.
  • Establishment of a substantial Subsidence Database as part of the SSIMS. As of 8 January 2019, the SSIMS housed 22,569 subsidence survey files that comprise a total of 1,082,350 subsidence survey data points obtained from monitoring grids above 533 extracted longwalls in NSW. The Subsidence Database will increase in size on an on-going basis as every operating longwall mine in NSW submits mining and subsidence survey data through the Data Submission Portal under the requirement of clause 67(2)(d) of the Work Health and Safety (Mines and Petroleum Sites) Regulation 2014.
  • Delivery of a tangible product, ie the Data Query Portal, to the industry users and relevant regulatory agencies via the Internet, allowing them to interrogate the information stored in the SSIMS for the purposes of risk management, recovery of coal resources as well as risk-based regulation in relation to subsidence.   

The established subsidence query facilities, accessible via the Data Query Portal, are supported by an innovative methodology developed by the project team, whereby each reading of a given subsidence parameter (ie vertical subsidence, compressive strain, tensile strain or tilt) is correlated with its likelihood within a defined query range.  This approach is new to the conventional subsidence engineering.  The quantifiable likelihood and its associated magnitude of a given subsidence parameter, as described above, will lead to improvement to risk management, recovery of coal resources as well as risk-based regulation in relation to subsidence.

Importantly, the above-mentioned subsidence query facilities provide quantifiable likelihood for the occurrences of abnormal subsidence which have been the core risks responsible for most of the subsidence incidents recorded in NSW. The likelihood of abnormal subsidence is determined subject to the magnitude of the maximum (of a subsidence parameter) predicted by the mine operator.  An under-predicted maximum, observed previously from time to time in NSW, will lead to a higher likelihood of abnormal subsidence, which must be duly considered in risk assessment.  It follows that strong debates on such under-predicted subsidence should not be necessary.  Importantly, by focusing on the likelihood as well as its associated magnitude of subsidence, rather than the accuracy of the predicted magnitude in isolation, the methodology developed by the ACARP Project promotes significant industry cultural changes towards an improved risk-based approach to subsidence management.

Longwall extractions across all Coalfields in NSW (single seam only) have been divided into six groups according to the geometry of mine layouts.  The query facilities have been established for each of the six longwall groups in relation to the key subsidence parameters, ie vertical subsidence, compressive strain, tensile strain and tilt.  

The complex interactions between individual longwall panels have been addressed via a specially designed sampling procedure which works in the backend requiring no involvement of the users of the subsidence query facilities.  A Users' Manual for the subsidence query facilities is available on the Internet as part of the SSIMS.

The project team have overcome some of the confusion associated with the conventional subsidence engineering and created new knowledge.  The utilisation of a new concept, ie critical or super-critical longwall domains, to characterise the development of subsidence and to address the complex interactions between individual longwall panels, have led to the establishment of the innovative subsidence assessment methodology as described above.

The SSIMS, as described above, is unique in the world.

A Users' Manual, which outlines the procedures to gain access and to use the subsidence query facilities, is attached to Appendix C of this Report.  

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC