DPM Risk Factors Extension: Effect of Cooled Exhaust and Scrubber on Toxic Particulate Formation

Underground » Health and Safety

Published: September 13Project Number: C20036

Get ReportAuthor: Julian Greenwood, Hao Wang, Zoran Ristovski, Terry O'Beirne | SkillPro Services

This work is a continuation of other ACARP funded research conducted by the authors into diesel exhaust toxicity. The prior work firstly examined the change in diesel particulate matter (DPM) emissions produced by a number of alternative diesel fuels, finding a disparity between the 'amount' of DPM indicated by conventional mass measurements, and other metrics such as particle size and particle number. In subsequent work, an in-depth review was made of current research regarding the relationship between measurable DPM properties and the health risk to exposed workers. The importance of measuring the number of very small particles (< 50 nm diameter) was clear, but no reports could be found which assessed this aspect of the exhaust emitted from the water cooled systems seen on Australian underground vehicles.


This project commissioned a mine relevant diesel engine, complete with water-cooled wet-scrubbed exhaust conditioner, in a laboratory dynamometer test facility. Exhaust diesel particulate emissions were characterized in great detail, using the metrics which have been identified as most relevant to assessing health risk associated with DPM exposure: particle number, particle size, mass and organic compound concentrations.


Exhaust samples were taken from three locations within the exhaust conditioner, with the goal of learning the effect of the exhaust conditioner on toxic particulate formation. The conditioner was found not to affect the gross physical characteristics of the particles, but a portion of them seemed to be retained in the scrubber water. The organic carbon content of the exhaust was increased by the conditioner, but more work is required to ascertain the net change to health risk posed by this factor. Testing was limited to a single engine speed and load.



As anticipated, considerable difficulty was encountered in sampling the 'wet' exhaust from after the conditioner. The problems centred around water condensation within the dilution equipment and measuring instruments, and coagulation of exhaust soot within the sampling lines. These problems were partially solved, and the experience gained would enable further improvements to be made in future work, but the equipment used is not suitable for deployment underground without further development.


Three different dilution ratios were used when taking exhaust samples, representing the range of worker exposure conditions likely to be found underground. The particle physical characteristics were found not to be sensitive to the sampling dilution ratio. However, the concentration of organic compounds in the DPM was influenced by the sampling dilution ratio. This demonstrates the importance of matching sampling conditions with actual exposure conditions.


Several different instrument technologies were employed for the particle measurements. A comparison was made of the results obtained from each, across the range of dilution ratios and sampling locations used. The results indicate that reliable mass readings may not be obtained from filter collection methods at low dilution ratios, nor from laser light scattering instruments when sampling 'wet' exhaust. A portable instrument for measuring particle number and average size was found to give acceptable readings at high dilution ratios.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C26059Proof Of Concept Of The Electronic Spark Test Apparatus On Existing Known Power Supplies

This project continued a long running research program into an elect...

C26070Industrialisation Of Proof Of Concept Wall-Flow DOC + Filter System

The need to protect workers from diesel particulate matter (DPM) had...

C25001Ventilation And Gas Management - Underground Coal Mines

This planning guideline has been prepared to assist mine operators t...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C26034Coking Properties Deterioration In Small Samples

Accurate evaluation of coking coal parameters at the exploration sta...

C23029Alternative And Sustainable Explosive Formulations To Eliminate Nitrogen Oxide Emissions

This technical report describes the technology of a novel mining exp...

C25005Site Based Trials Of Alternative Explosive Formulations To Eliminate Nitrogen Oxide Emissions

This report documents the outcomes of Phase 3 of this project and b...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26009Improved Precision Of Determining Coal In Urban Dust

Dust samples collected in coastal locations using High Volume Air Sa...

C26015Novel Characterisation Of Coal Petrography For Improving The Dewatering Of Fine Coals Using Chemicals

This project aimed to develop alternatives to existing mechanical de...

C26014Low Cost Online Measurement Of Particle Size And Density For Diagnostics Across The Fine Coal Circuit

This project has developed a novel prototype optical system for prof...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26045Mineralogy Effects On The 3D Porosity Evolution Of Coke And Coke Reactivity

CRI/CSR CO2 combustion data are key metrics of coke quality and perf...

C25049Fusibility Of Coal Blends And Minerals In Coking

The CSIRO optical reflected light imaging CGA (Coal Grain Analysis) ...

C25045Stage Two - Assessment Of In Situ High-Temperature Strength Of Cokes

Stage I of this project established a reliable and repeatable proces...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

C27008Selective Absorption Of Methane By Ionic Liquids

The connection of a ventilation air methane (VAM) abatement plant di...

C24061Proof-Of-Concept Photocatalytic Destruction Of Methane For Coal Mining Fugitive Emissions Abatement

Australia's fugitive emissions in 2015 were 41 Mt CO2-e (representin...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook