ACARP ACARP ACARP ACARP
Underground

Dust Monitoring Methodology (Inhalable and Respirable Dust Level)

Underground » Environment - Subsidence and Mine Water

Published: August 13Project Number: C20007

Get ReportAuthor: Ting Ren, Brian Plush and Naj Aziz | University of Wollongong

Informative and reliable dust monitoring plays an important role in identifying dust issues in underground coal mines and subsequently the development of effective mitigation strategies. NSW mining industry has a long record of dust sampling provided by Coal Services Pty Ltd. This testing programme has assisted the industry in achieving outstanding results in the elimination of black lung etc. Nevertheless, a number of limitations with the existing methodology have been identified, these include large number of failed samples due to contamination; provision of limited useful information that can be linked to specific activities and working environment, and thereafter cannot be used to assess and refine dust controls.

 

A critical review of the current dust sampling methodologies used in NSW and QLD in Australia as well as internationally has been conducted to identify their merits and limitations. The most common industry practice has been the used of gravimetric dust monitoring with cyclone separation and collection of the sized particles for weighing, generally over the period of a full shift to measure personal exposure levels to airborne contaminants of employees. The current testing regime in Australia provides the mine with a single figure for respirable dust exposure levels for 5 samples taken over a minimum of 4 hours during a production shift. These figures only provide information relating to the exposure levels of the person sampled, and does not provide any feedback on where the dust has come from or any other information that would allow the mine site to implement improvements in mitigation procedures should a non-compliance, or failure to statutory regulations occur.

 

A real time personal dust monitor (PDM) has been introduced into the Australian mining industry and extensive field dust monitoring work has been undertaken to evaluate the reliability and effectiveness of the instrument. The real time dust monitor can record dust loading on a continuous basis (a shift), or over a period of time, allowing mine operators to view their dust exposure levels during that period. The real time dust monitor has the ability to quickly identify high dust generation events such as during longwall chock movements and shearer cutting actions by recording higher spikes of dust levels in responding to these activities. As demonstrated in this study, the instrument has the potential to be used as an engineering tool to evaluate the effectiveness of dust control strategies. Up to date, the stringent regulations in Australian underground coal mines have limited the use of the real time PDM for routine dust monitoring, particularly in NSW.

 

The new dust monitoring method has proven to be reliable, robust, flexible and sensitive. Reliability has been proven by the parallel samples taken by Coal Services in which both results were very similar, the robustness is shown by the continued gathering of reliable and useful data, the flexibility is demonstrated by its ability to adapt to a required or designed testing methodology and its sensitivity is seen by the results identifying significant problems on longwalls, eg ventilation bypass, goaf over pressurisation, poor water pressure or flow to sprays, etc.

 

Dust measurements from this study indicate that operators struggle to remove greater than 30% of both respirable and inhalable dust produced on their operating longwalls. It is envisaged that a greater than 50% reduction in both respirable and inhalable dust can be achieved with best practice engineering, which will have a direct reduction in exposure levels to workers on the face and significantly reduce the risk of lung disease in employees.

 

Field trials of the new dust monitoring methodology have successfully identified the most efficient installed engineering controls operating at individual sources of respirable and inhalable dust generation on operating longwalls in Australia. By installing the best practice engineering controls, operators are in a better position to ensure compliance to regulatory standards for exposure levels and most importantly, they are ensuring minimum risk to worker health by ensuring they are mitigating the most respirable and inhalable dust possible from the mining environment.

 

Field demonstration of this new dust monitoring methodology has shown it to be a valuable and robust informational tool that will have a significant benefit to not only the underground coal industry, but all industry that are affected by airborne contaminants less than 10 micron in size. The ability to understand the actual dust production, coupled with the quantification of performance of installed engineering controls for dust mitigation, will give all operators of dust producing activities a valuable tool to better control their airborne contaminants. By better understanding and control of airborne contaminants, a significantly healthier workplace and environment will be achieved. This new dust monitoring system can therefore be used to:

· Measure and quantify dust loads at identified sources of dust generation utilising gravimetric sampling;

· Evaluate current dust controls and their effectiveness at each of the above sources of dust generation;

· Analyse the most effective control process in place for each source of dust generation; and

· Help the design of a monitoring process and best practices for implementation on to minimise dust exposure levels.

 

It is recommended that further studies be undertaken that include real time monitoring sampling in parallel to the DME model and identify if real time dust measurement data can quantify dust loads as well as exposure levels.

 

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C33029Review Longwall Face Ventilation To Mitigate Goaf Gas Emissions Onto Walkways And Tailgate End

As longwall mining increasingly targets deeper coal seams, managing ...

C29009Control Of Transient Touch Voltages During Switching

There have been an increasing number of electric shock incidents rep...

C29025Effectiveness Of Shotcrete In Underground Coal Mines

The primary objective of this project is to quantify the effectivene...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33036Radar Tyre Monitor System

This project focussed on trialling a radar sensing technology design...

C26020Preventing Fatigue Cracking Via Proactive Surface Dressing

Fatigue cracking of plant and equipment presents a significant chall...

C33046Rationale For The Use Of Paired Continuous Real Time Noise Monitors To Reduce Uncertainty In The Quantification Of Noise From Open Cut Coal Mines

Numerous experimental studies of varying duration have been undertak...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C34041A Coal Spiral For The 2020S

The objective of this project is to develop an enhanced coal process...

C33057Foreign Contaminants Detection On Conveyor Belts Using Digital Imaging Processing Techniques And Coal Penetrating Sensors

This project was initiated to tackle the ongoing issue of foreign co...

C29065Wash Plant Fines Testing Methods Enhancement

Accurately estimating the proportion of expected fine size material ...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C34054Scoping Study: Design Of Cokes From Biomass-Coal Blends For Sustainable Blast Furnace Ironmaking

There is an increasing focus on improving the environmental sustaina...

C34058Strength Development In Fouling Deposits

When coal is combusted in a boiler, the fly ash that is produced flo...

C34059Coke Reactivity With CO2 And H2O And Impacts On Coke Microstructure And Gas Diffusion

With the global shift to low-carbon ironmaking, partial substitution...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC