Coal Preparation

A Step Change in Fine Coal Beneficiation - Inverse Flotation

Coal Preparation » Fine Coal

Published: July 12Project Number: C19036

Get ReportAuthor: Kevin Galvin, Kathika Liyanaarachchi, Simon Iveson, Grant Webber, Catherine Whitby, John Ralston, Daniel Weissmann, Diana N. H. Tran | University of Newcastle, University of South Australia

The objective of this study was to establish a major step change in the technology used by the coal preparation industry to beneficiate fine particles, especially particles smaller than 0.200 mm. We use the term “Inverse Flotation” to describe the new method of fine coal beneficiation. Particles in a gaseous dispersion interact from the gas side of the gas-liquid interface, either at a planar interface or at the surface of falling drops.

In conventional flotation the particles approach the gas-liquid interface from the liquid side. This limits the efficiency of recovering fine particles, because fine particles tend to follow the fluid stream lines and hence have a low collision efficiency with the bubbles. Due to the low viscosity of air compared to water, inverse flotation processes should have a much higher collision efficiency.

The aim of this project was to perform laboratory scale experiments to test the feasibility of two alternative inverse flotation methods. The first method involved contacting the particles with a moving liquid interface in a trough. Hydrophilic particles should sink, and the hydrophobic coal particles should float and be entrained in the overflow. This work was carried out at the University of South Australia. The trough showed the potential to separate particles based on their hydrophobicity. For instance, the trough could split a -106 um coal sample with a head ash of 55 % into an overflow product with an ash of 23 % and underflow with an ash of 61 %, at a yield of 57 %. This work was compared with that achievable using a laboratory Denver flotation cell. After 20 minutes, in the absence of a frothing agent, this cell was able to separate the same feed sample and achieve a product with 11 % ash at a yield of 39 %. However, with MIBC frothing agent, a product with 14 % ash at a yield of 62 % was achieved. This result was much better than that obtained using the trough.

The second method involved the interaction of a dry dispersion of feed with falling drops. This work was carried out at the University of Newcastle. The feed plume of dispersed particles was projected horizontally into the collision chamber. Water drops were released to fall vertically through the chamber. The dispersed particles then collided with the water drops, with selective capture of the hydrophilic particles. The water collected at the base of the chamber, and then drained into the underflow collection tank.

These experiments produced a linear correlation between the recovery of the particles in the underflow and the water flux. The difference in underflow recovery for two types of particles provides a measure of the selectivity of the process. For glass ballotini (spheres) in 38-45 um size range, the cleaned ballotini had a recovery about 30 % higher than the uncleaned ballotini. Clean (hydrophilic) crushed silica particles had a 45 % higher probability of being captured than coal particles of a similar size. Hence, this work proved that there is selectivity between hydrophilic and hydrophobic particles.

Overall, there was some clear selectivity measured, dependent on the particle size and other surface properties of the material. However, given the limited magnitude of the observed selectivity, it is unlikely that either of these concepts will develop into a new technology competitive with conventional froth flotation. The trough also suffered from a very limited throughput capacity. The multiple falling drop apparatus had serious operational problems when trying to disperse fine particles into a plume, due to their tendency to aggregate. These problems would only become worse with real feeds.

As a result, it is recommended that no further investment be made into developing either of these two processes.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook