Open Cut

Bulking and Subsequent Self-Weight and Saturation Settlements, and Geotechnical Stability, of Deep Coal Mine Spoil Piles

Open Cut » Geology

Published: September 15Project Number: C19022

Get ReportAuthor: David Williams | The University of Queensland

Australia's open cut coal mines are extending to ever increasing depths, with correspondingly deeper associated spoil piles. As the depth of spoil increases, the net bulking of the spoil becomes critical to the design, sizing, geotechnical stability assessment, and cost estimation, of both in-pit and out-of-pit deep spoil piles. In turn, this impacts the economics of deep open pits and associated deep spoil piles. Erroneous estimates of the settlement and geotechnical stability of deep spoil piles can lead to the need for costly out-of-pit spoil piles later in the mine life, and the geotechnical instability of spoil piles can hinder and even threaten further mining.


ACARP Project C19022 entitled "Bulking and Subsequent Self-Weight and Saturation Settlements, and Geotechnical Stability, of Deep Coal Mine Spoil Piles" focussed on the geotechnical stability of deep coal mine spoil piles of varying spoil types. This was achieved through applying soil mechanics principles to investigate the load-settlement and degradation behaviour of a range of open cut coal mine spoil types tested both at their as-sampled moisture content and in a water bath, to assess the settlement and geotechnical stability of deep spoil piles.


The objectives of Stage 1 were to test in the laboratory the mechanical behaviour of a representative range of coal mine spoil types, to develop a predictive model for the settlement and geotechnical stability of deep spoil piles of mixed composition, and to demonstrate the application of the research results. The objectives of the Stage 2 extension were to extend the previous compression and strength testing to a larger-scale, and to further develop, validate and calibrate the spoil settlement and net bulking predictive model.


The laboratory testing included physical and basic chemical characterisation testing, and geotechnical parameter testing. Among the characterisation testing was moisture content, total suction, Atterberg limits, specific gravity, electrical conductivity and pH, and Emerson crumb testing. Particle size distribution analysis was also carried out, including SplitDesktop analysis, dry sieving of air-dried and oven-dried specimens, wash sieving both without and with dispersant, and hydrometer testing of the fine fraction, both without and with dispersant. The geotechnical parameter testing included Standard compaction, direct shear strength testing of dry and wet specimens, compression (oedometer) testing of dry and wet specimens, and degradation testing on exposure to the weather.


The project identified and quantified three components of spoil settlement as self-weight settlement of initially dry spoil, "collapse" settlement on wetting-up of the spoil, and degradation-induced spoil settlement on exposure. The outcomes of the Project included understanding and quantification of the initial bulking and subsequent self-weight, collapse and degradation-induced settlements, and geotechnical stability, of a representative range of coal mine spoil types, the development of spoil testing and analysis protocols, and the development of a spreadsheet-based model for predicting the settlement and net bulking of deep spoil piles of mixed composition.


The Project ran for 4 years from April 2010. The total cost of the Project was $ 1,341,500, including funding from ACARP of $427,000.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook