Coal Preparation

Evaluation of In-Line Pressure Jig

Coal Preparation » Gravity Separation

Published: December 07Project Number: C16042

Get ReportAuthor: Andrew Vince, Peter Purdon, Laurie Gibson, Tim Hughes | Elsa Consulting Group, ACIRL, Gekko Systems

The Gekko Systems In-Line Pressure Jig is a mature technology that has been successfully used in the metalliferous industry for over ten years, but has not been systematically tested in the coal industry. It has the potential to efficiently process coal over a very broad range of sizes (30 – 0.25mm) using a low water consumption and simple process that is very successful in the metalliferous industry. It offers the real possibility of a low cost nil consumable way for the Australian coal industry to efficiently process mid-sized coal particles.This would enable existing coal preparation plants to run at considerably higher feed rates simply by installing the In-Line Pressure Jig and increasing screen panel apertures. In addition, higher efficiencies may be achievable by reducing the cut point-particle size effects seen in dense medium cyclone units, particularly for particles smaller than the breakaway size (around 5mm for a 1m DMCs).

A preliminary investigation of the operation of a Gekko Systems In-Line Pressure Jig (IPJ600) was undertaken with raw coal sourced from a Hunter Valley and a Bowen Basin coal mine. The unit was evaluated using the ACIRL Maitland pilot plant facility with volumetric feed rates around 16-17m3/hr and solids concentrations typically around 5%, but ranging up to 22%. The size fraction tested was 6 x 0.5mmWW, with a limited number of tests undertaken with 6 x 0.25mm solids. The top size limitation was due to pilot scale solids handling limitations. The manufacturers claim a larger sized unit could handle up to 30mm.

This unit was able to achieve spiral-like separation efficiencies over a very wide range of D50 cut points:

  • D50: 1.43 -1.55, Ep: 0.075 - 0.150 for 6 x 2mm particles.
  • D50: 1.48 -1.66, Ep: 0.180 - 0.213 for 2 x 0.5mmWW particles
  • D50: 1.80 - 2.00, Ep: 0.282 for 2 x 0.25mm particles.

The results reported were obtained by undertaking a very limited (one at a time) parametric study of feed rate, ragging RD, pulse frequency and stroke length. However, it is unlikely that optimum operating conditions were identified by this preliminary investigation.

It is considered testament to the robustness of the design of the In Line Pressure Jig that such excellent performance was achieved from an obviously un-optimised unit. The unique design feature that led to the good performance was the moving (jigging) of a fully submersed bed of particles on a screen support within a continuum of water. This allowed excellent control of both the dilation (downward screen movement) and the settling stroke (upward screen movement) jigging process, which is unlike a conventional hydraulic jig where settlement is controlled by the settling velocities of the raw feed solids. This is a major improvement to jig design and has the potential to give better efficiencies than conventional jigs.

The areas of optimisation considered to be of primary importance are the pulse rate, pulse amplitude and pulse shape (Nesbitt et al, 2005). These are parameters known to be important to conventional jigs (Wills, 1997), noted to be important in a recent theoretical study of the In-Line Pressure Jig (Nesbitt et al, 2005) and confirmed by the current investigation. It is considered that there is considerable room for improvement for both D50 control and separation sharpness through optimisation of the abovementioned three parameters.

Given the large number of operating variables that need be adjusted, an optimisation approach is highly recommended involving the discrete element modelling/computational fluid dynamics approach recently used so successfully to model dense medium cyclones. This approach has the added benefit of negating any feed coal quality variation and experimentally induced variations on the systematic parametric study. Once the simulations have been completed, larger scale testing would allow the true potential of the In-Line Pressure Jig to be validated.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook