ACARP ACARP ACARP ACARP
Technical Market Support

Improved Grindability Test: Essential Refinements to Method

Technical Market Support » Thermal Coal

Published: January 07Project Number: C15068

Get ReportAuthor: Dick Sanders | QCC Resources

The Hardgrove Grindability Index test, developed in 1932, is universally used in specifications for coal purchase and power station pulveriser design, to indicate the grinding property of coal and other commodities. It has, however, three deficiencies:

  • it uses only the coarse (harder) part of the sample - producing biased (low) results
  • it grinds a standard mass rather than a volume - producing low values for stone bands
  • it reports the result as an arbitrary index - giving no direct indication of the physical properties of the coal tested.

Initial IGT Project C12063

A test was developed and demonstrated, which overcame all of the deficiencies of the Standard Hardgrove Grindability Index (HGI) Test. It used a standard volume of a representative 'by zero' sample, and expressed the results of the standard grind in terms of the Sauter mean diameter, SMD (in µm). The test was named the Improved Grindability Test (IGT).

Extension IGT Project C13065

The test was applied to a wide range of coals, comprising 22 from three States and four from ACARP Project C13063 'Milling of Blends' (plus six blends made from these four coals).

Petrographic tests confirmed that the HGI test portion, in all cases, contained less of the soft components (mono-macerites) and more of the hard components (tri-macerites) i.e. gave a result that was not representative of the whole coal.

A Standard procedure, based on modifications to the current HGI Standard, was prepared for consideration by the committee of Standards Australia.

The precision of the test, in an experienced laboratory, was found to be similar to that for the HGI, but unsatisfactory in another two laboratories doing the test for the first time, with nonidentical sample measuring apparatus.

Sizings of blends prepared at 4.75 mm top size were coarser before and after the IGT than calculated from the individual components i.e. hard coals had a disproportionate influence on a blend.

A 'Steady State' IGT was developed, where the -75 µm material was removed twice during the test and replaced by an equivalent mass of feed material (-2+0 mm). Results from the Standard IGT correlated closely with the mass of recharge material, giving rise to confidence in the IGT as an indicator of power station mill capacity. The mass% of fines removed trended towards 'steady state' after 4 to 5 minutes.

The overall outcomes confirmed that the IGT result was an excellent indicator of the grindability of a coal. However, breakage pre-history was considered to affect the size distribution of the IGT test portion and hence the result. A modification to the method was needed to overcome the effect of prior breakage and this was the basis for this (third) project.

Current IGT Project C15068

Six coals of widely varying type were sampled at exposed coal faces i.e. with no prior breakage history. These were dropped repeatedly, crushed to pass 50 mm, and divided into A and B streams. A was 'gently' crushed to pass 8 mm (jaw crusher), while B was 'vigorously' crushed to pass 8 mm (swing hammer mill). Each -8 mm sample was then crushed to pass 2 mm by passing about ten times through a plate mill with progressively closer settings. The results have shown that the effects of prior breakage history can be substantially minimised, although not completely eliminated (especially for the softest coals), by increasing the starting sample top size from 4.75 to 8 mm and crushing all of the sample each time, for a large number of passes, to the 2 mm top size for the IGT test.

Testing outcomes, and the interpretation of results, have been significantly compromised by sample losses during preparation and testing.

Precision at a given laboratory seems acceptable, although agreement between laboratories is disappointing.

The Steady State version of the IGT shows great promise, with the mass% of -75 µm produced by grinding, under 'steady state' conditions (5 minutes) being a useful indicator of a coal's grindability.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C27039True Triaxial Strength Of Coal Measure Rocks And Its Impact On Roadway Stability And Coal Burst Assessment

Rocks in the ground are subject to a range of stresses. The stresses...

C3063Underground Vehicle Design Standards And Statutory Implications

The Australian underground diesel vehicle fleet has evolved since di...

C3064Conveyor Belting And Lagging Shear Characteristics - Drive Drum Slip

The primary aim of this project was to investigate the relationsh...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C29021Assessing The Impact Of Consecutive Night Shifts On Night-Time Alertness, Daytime Sleep And Timing Of The Circadian System

In the Australian coal mining industry, most guidelines for managing...

C33037Quantifying Recharge To Groundwater Systems In The NSW Coalfields (Sydney, Gunnedah And Gloucester Basins)

The purpose of this project was to estimate the rate of diffuse rec...

C26029Geological Controls On Fluorine And Phosphorus In Bowen Basin Coals

Increasing global restrictions on fluorine in product coal prompted ...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27064Dry Beneficiation Using FGX And X-Ray Sorters

Conventional dry processing methods engage a single beneficiation de...

C26010Multi-Sloped Screening Efficiency With Changing Strokes, Frequencies, Feed Solids And Feed Rates-Pilot Plant Study

Optimising multi-sloped screens is often described as an art and the...

C28059Impact Of Water Quality In Coal Handling And Preparations Plants

The objective of this project was to deliver a concise reference do...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

C27054Optimisation Of A Thermal Flow Reversal Reactor For Ventilation Air Methane Mitigation

Ventilation air methane (VAM) generally accounts for 50-85% of the t...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC