Mine Site Greenhouse Gas Mitigation

Australian Decommissioned Mines Gas Prediction

Mine Site Greenhouse Gas Mitigation » Mine Site Greenhouse Gas Mitigation

Published: September 06Project Number: C14080

Get ReportAuthor: Les Lunarzewski, David Creedy | Lunagas, Wardell Armstrong

A previous ACARP project C13007 Gas Emission Curves For Sealed Goaves Or Abandoned Mines established gas emission decay curves for dry coal mines. The gas emission characteristics following cessation of coal production fall into three categories:

  • Production gas rapid decline phase
  • Background gas stabilisation phase, and
  • Background gas long term decline phase.

Background gas is the emission from worked out areas and mature goaves.  Production gas is the release of gas from sources freshly disturbed by mining activity. During mining both production and background gas is emitted but about three months after coal production ceases, the latter becomes the dominant process. By the time 12 months have elapsed the long term decline phase is usually established and background gas flow can be represented by an exponential of the form

where ‘x’ is time, ‘a’ is initial emission and ‘b’, a decay constant.

This project is a continuation which updates the formulae (curves) for the dry mine case and extends the prediction process to take account of groundwater recovery which occurs when a mine is closed and water pumping is halted. The research shows that in Australian conditions, when estimating the total decommissioned mine methane, account should be taken of the gas remaining in both the coal seams and the strata disturbed by longwall extraction, plus gas remaining in coal pillars where there has been extensive room­ and­ pillar extraction. As the workings flood, gas sources are progressively isolated and gas flows decay more rapidly than with the dry situation.

The effect of flooding is to progressively remove gas sources and this process can be simulated using the “Wetsim” decay prediction method by setting emissions from progressively shallower longwall goaf areas to zero as water level rises. The time taken for the workings to flood is calculated using a void model and inferred water inflow data. Two simple, empirical methods for rapidly assessing flooding effects on gas emission have also been developed.

The integral of an emission decay curve provides a first order estimate of potentially accessible DMM resource. The magnitudes of the individual gas source components can be back calculated using a geological resource model and the extraneous strata gas found by difference. The original total quantities of gas ­ in ­place (GIP) before mining can also be estimated; for the two study mine sites these are substantially greater than previously thought which may have implications for gas emission prediction models applied to working coal mines. Thus, a methodology has been established for assessing greenhouse gas emissions from closed mines and estimating methane availability for utilisation for dry and flooding scenarios.

A package encapsulating all the key data will be supplied to ACARP to be used for future research subject to the written approval of the data owners.

The accuracy of DMM predictions depend largely on the quality and quantity of data available. Determined efforts are needed to gather relevant data during the mine closure process when key staff members are being reassigned and priorities have been refocused on the next mining project.


Health and safety, productivity and environment initiatives.


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook