ACARP ACARP ACARP ACARP
Coal Preparation

Flotation Diagnostics by Coal Grain Analysis

Coal Preparation » Fine Coal

Published: June 06Project Number: C13059

Get ReportAuthor: Graham O'Brien, Philip Ofori, Barry Jenkins, Bruce Firth | CSIRO Exploration & Mining, CSIRO Energy Technology, Jenkins-Kwan Technology

In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have differing hydrophobic characteristics and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. Samples obtained from audits of coal flotation circuits of three coal preparation plants were studied. The study showed that pure grains of coarse inertinite and composite particles containing inertinite had lower flotation responses than pure grains of vitrinite and vitrinite-rich grains. In one circuit processing material with a nominal top size of 0.500 mm and a significant proportion of coarser particles, considerable loss of combustibles, mainly coarse inertinite and composite particles was observed. For another flotation circuit treating a feed with a top-size of 0.250 mm in mechanical cells most of the combustibles of all grain classes were recovered. This has provided a more advanced diagnostic capability for fine coal cleaning circuits than was previously possible. This approach enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

The information on grain size, density and composition has been used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices.

This study also attempts to develop flotation models that respond to changes in the size and composition distributions of the feed particles. A particle size and composition dependent kinetic flotation model is used to generate data for varying feed particle composition, density and size distribution. The model is assessed for its ability to predict the effects due to changes in particle properties. Distributed flotation rate constants are used for fitting the effects of particle heterogeneity, accounting explicitly for particle composition. This has essentially allowed the concepts used in metalliferous mineral flotation with a focus on the flotation of specific mineral entities to be applied to coal flotation. This was not previously available. The model predictions have been compared with laboratory experimental data. The calculated component recoveries and rate constants compared well with the experimental data. Moreover, the model predictions were able to replicate the characteristic maximum in rate constant and recovery for the intermediate size classes as well as mimic previous experimental observation that coarse inertinite and inertinite-rich composite grains have lower rate constants than vitrinite and vitrinite-rich composite grains. A great need identified in this respect is a reliable component flotability estimation which was partially touched on but requires further work.

The coal grain analysis methodology has been used to generate washability information and the results compared with float-sink analysis data. The results showed very good agreement with the float sink results, which suggests that provided the maceral and mineral densities are known and that the maceral and mineral proportions are accurately measured in each grain then coal grain analysis provides a realistic alternative for determining the washability characteristics of fine coal compared to that achieved by using organic liquids. To date testing has been restricted to samples with a topsize of 1mm, and further testing is required to verify that the method can obtain reliable washability information on size fractions up to a topsize of approximately 4mm. The method was also able to provide washability information on ultra fine (eg -63 micron) samples that are difficult to analyse with organic liquids.

An experimentally determined relationship between %ash and % minerals allows the generation of estimated yield-ash curves which are useful in determining an estimated yield at a specified product ash for samples of fine coal.

Underground

Health and safety, productivity and environment initiatives.

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C19024Establishing Ecologically Sustainable Mine Water Release Criteria In Seasonally Flowing Streams

Extreme rainfall conditions in the Fitzroy Catchment over an approxi...

C25030Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C27046Estimation Of True Deformation Vector From Slope Radar Monitoring

Slope deformation radar monitors are now widely used in open cut coa...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C27004Improving Coal Flotation With Oscillatory Air Supply

This report provides detailed information on coal flotation with os...

C25018Improving Solids Recovery And Moisture Reduction In Ultrafine Coal Dewatering

This report provides detailed information on fine coal dewatering in...

C27028Lab Froth Flotation Testing Guide With Coal Quality

Correct outcomes from laboratory froth flotation testing in coal bor...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C26039Nanoporosity In Cokes: Their Origin, Control And Influence On CO2 Reactivity

This project using the outcomes of previous project C24060, examine...

C28063A Comprehensive Technical Review Of High-Efficiency Low-Emission (HELE) Pulverised Coal Combustion Technologies For Power Generation

Research and development has been undertaken worldwide to realise co...

C28064Carbon Structure Transformation During Coking Of Australian Coking Coals: Better Understanding The Coke Formation

Carbon structures of coke that are formed during the plastic layer a...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL) - Phase 2 Demonstration In A Packed Bed Reactor

An alternative approach to high temperature oxidation of ventilation...

C26004CFD Modelling Of Reverse Thermal Oxidisers For VAM Abatement - CFD Modelling Of Fixed-Bed RTO Devices

The project is part of a larger multi‐phase program of study a...

C27058Technological Assessment Of A Recycle Reactor For VAM Abatement

Underground coal mining emits high volumes of methane, diluted in ve...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC