ACARP ACARP ACARP ACARP
Coal Preparation

Impact of Saline Water on Coal Flotation

Coal Preparation » Environmental Improvement

Published: October 05Project Number: C13051A

Get ReportAuthor: Philip Ofori, Bruce Firth, Graeme Jameson, G Franks, A Nguyen | CSIRO Energy Technology, University of Newcastle

This project has produced a handbook to assist plant operators to understand the implications of changes in water chemistry in the plant, particularly on flotation.
Large inventories of saline water are accumulating at some mine sites due to discharge restrictions. At the same time there is pressure on the importation of fresh water for use at mine sites. It makes sense to use the saline mine water for all duties and processes where detrimental effects are minimal or where there is beneficial impact on operations. One of the areas where saline water can be used is as process water in the coal preparation plant. The work detailed here is aimed at understanding the major impacts of saline water on coal flotation which is the process most likely to be significantly affected due to its dependence on surface chemistry to function effectively.

Experimental data from batch flotation tests in which no conventional reagent was added clearly showed that flotation recovery generally increases with increasing electrolyte concentration at least for the salts used in these experiments.  For the single salts studied, combustibles recoveries attained in the presence of MgSO4 were slightly higher than those of MgCl2 and CaCl2 and these salts in turn produced much higher flotation recoveries than NaCl at the same concentrations. This is consistent with zeta potential data. When the combustibles recovery data was examined in terms of ionic strength, the results for all the salts were much closer.

Flotation in mixtures of salts produced higher combustibles recoveries than in single salts at the same concentration. The implication is that lower concentrations of several salts as found in saline waters at minesites could produce enhanced flotation recoveries even when individual salts at those concentrations have only minor effect on coal combustibles recovery.

Flotation using conventional collector and frother in the presence of low concentrations of salts such as MgSO4 results in higher combustibles recovery than when the salt is absent. Conversely, lower concentrations of the collector may be required to attain the same combustibles recoveries when the water contains small concentrations of salts.

The flotation kinetics data also show increases in flotation rate with increasing salt concentration.

The concentrations at which maximum recovery is attained are different for the different coal samples. For two coals of similar rank, one was found to be more difficult to float in saline water than the other. Petrographic analysis of the coals showed that the dominant maceral in the more floatable coal was vitrinite and the difficult to float coal was dominated by inertinite. The differences in flotation response between these coals may be attributed to a lower response of inertinite to salt flotation.

Social and commercial requirements mean that many coal preparation plants will be forced to use saline water accumulated from the associated mining operations.  This investigation has identified potential opportunities to decrease the use of collector/frother in the flotation circuit by proactive use of a saline water mixture to optimise a flotation response, especially where divalent cations concentration is high.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC