ACARP ACARP ACARP ACARP
Open Cut

Slotting While Drilling for Reduced Blast Damage to the Coal Seam

Open Cut » Drilling & Blasting

Published: April 05Project Number: C13033

Get ReportAuthor: Mehmet Doktan, Dihon Tadic | CRCMining

This project has developed an innovative technique and tool to reduce blast damage to the coal seam. Blast damage that leads to coal loss in open cut mines is generally seen in two forms:

  • Damage to the top of the coal seam and loss of coal during mining
  • Coal edge movement or block movement and subsequent burial of coal under overburden

Research to date indicates that the confinement and excess energy at the toe is responsible for these mechanisms. The standard preventive measures include strict control of stand off distances, adherence to the plans, baby decking and seam buffering. These are complicated, difficult to achieve, expensive and in most cases ineffective while being only a partial solution to the problem.

CRCMining has proposed and developed a novel technique to overcome the problem. The technique is based on creating hollow slots at the toe of the blast hole that will effectively reduce confinement and divert excess blast energy into the rock rather than damage the coal.

The project is intended to be completed in two phases. The objectives of the first phase of the research included:

  • Develop tools and systems for blasthole slotting
  • Conduct tests to prove the concept, the system and quantify the benefits of slotting
  • Develop guidelines for retrofitting a drill rig and site trials
  • Transfer project outcomes back to the industry for next stage funding

Various options for a suitable slotting tool were evaluated and a self-extending arm concept was selected as the most suitable system. A slotter that can be mounted on a drill rig or forklift was designed, constructed, and tested on various samples.

The tests conducted showed that coal measure rocks such as sandstone, were efficiently slotted (approximately 300 mm in three minutes) while hard rock, such as granite took significantly longer (50 mm in 8 minutes).

To demonstrate the effectiveness of slots in controlling fracturing, a number of specimens were drilled, slotted and blasted at a quarry. The results showed that slotting the hole resulted in a reduction of the Peak Particle Velocity (PPV) which is a measurable indication of blast damage. The photos below illustrate the difference in the fragmentation of the toe section of the slotted and non-slotted samples after blasting.

Upon successful completion of the first stage, a set of guidelines were developed to aid in the implementation of the next stage of work. The overall recommendation for the next stage of work is to develop, test (full-scale field test), and validate a slotting system independent of the drill rig (Figure A6).

Anticipated benefits of blasthole slotting include the following:

  • Reduced blast damage to the coal seam. Slots created at the toe of the blasthole will reduce confinement and provide a route for the gases to enter and break the rock. This will effectively reduce stresses otherwise acting on the coal seam.
  • Improved presplit operation and quality. Vertical slots created around the blasthole will encourage the gas entry and promote fracturing along the plane defined by slots.
  • Improved fragmentation. Cavities (large slots) and slots created at harder segments of the overlying rocks will significantly improve the fragmentation in those sections.
  • Improved cast blast throw. Cavities created and filled with additional explosives will promote better cast and throw.
  • Reduced need for sub drill. The need for sub drill may be reduced when the fracturing is controlled at the toe of the blasthole.
  • Increased safety. Due to better fracture control and reduced blast damage to the highwall, highwalls will have smother surface and therefore will be safer.
  • Reduced blast vibration. In areas where blasting is conducted close to residential areas, reduction of blast vibration is important. This can be achieved by multiple slotting along the blast hole.

The first stage of the blasthole slotting project was completed on time and budget with all project objectives achieved.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C28028The Inclusion Of High Interest Native Plants In Mine Site Restoration Programs: Propagation, Translocation And Field Re-Introduction

This report synthesises over 10 years of ex situ and in si...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C34029Validation Of Laser Induced Breakdown Spectroscopy (LIBS) As A Rapidly Deployable Field Technology To Estimate Coal Quality

Rapid evaluation of a coal resource by in-situ characterisation dow...

C34028Guidelines For Assessment Of Geotechnically Safe And Stable Post-Mining Landforms

The purpose of this project was to develop a guidelines document as ...

C34016Elements In Coal – A Start-To-End Analysis

This project explores the fate and concentration potential of critical e...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C26016Determining The Benefits Of Online Thickener Underflow Rheology Measurements

The aim of this project is to determine how useful the rheology meas...

C33056Modelling And Control Of Classifying Cyclones

Hydrocyclones are one of the key technologies for the classification...

C28056Surface Alloying Of Centrifuge Baskets And Sieve Bends Screen Surfaces To Increase The Service Lifetime

The main objective of this project was to improve the wear resistanc...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C33066Washability And Distribution Of Sulfur And Trace Elements For Different Size And Density Fractions Of Raw Coals

Based on the hypothesis that the levels of sulfur and other toxic tr...

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC