ACARP ACARP ACARP ACARP
Technical Market Support

Relating Coal Properties to Ash Deposition & Slagging: Tools for Investigation of Deposit Samples

Technical Market Support » Thermal Coal

Published: November 02Project Number: C10060

Get ReportAuthor: Terry Wall, Lisa Elliott, Dong-ke Zhang, David French, Bob Creelman, Sushill Gupta, Hari Babu Vuthaluru | University of Newcastle, Curtin University of Technology, CSIRO Energy Technology, RA Creelman and Associates

Several theoretical and analytical tools to characterise ash-related problems in pf boilers, including slagging, fouling, erosion and heat transfer, have recently been developed. This study details the evaluation of these tools, particularly in distinguishing the impact of coal properties, boiler design and operation conditions on the deposit characteristics. The project centered on six case studies, using samples collected from four domestic and two international power stations, representing a range of coal types and boiler designs.

The project has developed a sequence to apply analytical techniques in a systematic fashion, beginning with an initial evaluation using standard information, then progressing to more detailed deposit characterisation in phase one followed by the application of specific techniques in phase two as required.

The first stage is the collection of standard information on the deposit nature, location and timing, boiler type, design and operation and standard coal analyses. This information includes the coal(s) used prior to the episode, and whether operational changes such as load or air/fuel ratio were associated. In some cases, this information would be sufficient to identify the processes leading to deposit formation and enable remedial options to be identified. However, in other cases the standard information will provide little or no evidence as to the mechanism of deposit formation and deeper analysis will be required.

Application of the advanced techniques in phase one (XRF, XRD and SEM-EDS/EPMA) was of considerable benefit in all six case studies, identifying a possible deposit mechanism and thus remedial action. X-ray fluorescence analysis of the deposits showed the similarity or otherwise of the deposit chemistry to the coal ash chemistry. Quantitative X-ray diffraction analysis of the coal mineral matter was able to identify the mineral species which could give rise to slagging problems, such as potassium-bearing minerals. The application of SEM-EDS/EPMA analysis to the deposits provided valuable textural information and analytical data on glass compositions which could be used to postulate and discriminate between possible deposit mechanisms. For example, in one case study systematic variations in iron and silica were observed in the deposits suggesting initiation due to ultra-fine silica rather than iron.

Progression to phase two (QemSCAN, CCSEM, High Temperature XRD, TMA, FACT) was of further benefit in all cases, in either providing confirmatory data or enabling discrimination between competing models. QemSCAN analysis showed siderite to be the problem phase in one case study. Although quantitative XRD would also have identified siderite, QemSCAN was able to provide additional information on mineral associations that are important in assessing potential slagging behaviour. CCSEM provides similar data but has a more limited range of species which can lead to misidentification; in one case study pyrite was indicated to be an iron bearing phase by CCSEM whereas XRD analysis showed sulphate rather than sulphide to be the major phase. Thermo-mechanical analysis (TMA) proved useful in demonstrating the likelihood of deposit formation at relatively low temperatures in one case, and in another showed that a change in boiler operation was responsible for clinker formation.

The selection of the analytical techniques to be used in phase two should be made following an assessment of information following phase one. Hypotheses involving the formation of sticky ash due to the uneven distribution of minerals in pulverised coal would indicate the use of CCSEM/QemSCAN, the formation of strong deposits due to liquid formation or perhaps high furnace temperatures would indicate the use of TMA and sintering measurements. High temperature XRD is useful in identifying temperatures for formation of liquids from minerals, and TMA will indicate changes in melting when blending or temperature changes are remedial options.

The roadmap can be used to prove or disprove a hypothesis with varying degrees of certainty. The case studies highlighted the need for detailed information about the boiler operations at the time, and before, the deposit formation occurred and appropriate samples of both deposit and feed material. However, the project has demonstrated the value of applying the advanced characterisation techniques in conjunction with the standard information, which rarely results in clear identification of a deposit mechanism.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34007Evaluating Toxicity Of Different Types Of Respirable Crystalline Silica Particles To Lung Cells And Tissues

Silica dust represents one of the most significant occupational haza...

C29010In-Situ Stress Measurement Using Non-Destructive Techniques (Ndts)

Rock in depth is subjected to stresses due to overlaying burden and ...

C33029Review Longwall Face Ventilation To Mitigate Goaf Gas Emissions Onto Walkways And Tailgate End

As longwall mining increasingly targets deeper coal seams, managing ...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C35029Renewable Energy As Post-Mining Land Use

In 2020, the Queensland Resources Council (QRC), in partnership with...

C33036Radar Tyre Monitor System

This project focussed on trialling a radar sensing technology design...

C26020Preventing Fatigue Cracking Via Proactive Surface Dressing

Fatigue cracking of plant and equipment presents a significant chall...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C28061Quantitative Based Structural Integrity Evaluations Using Modal Parameters Estimation

This project focused on the development and implementation of a quan...

C34039Development Of A Soft Sensor For Predicting Dense Medium Cyclones Performance

This project details the development of a DMC soft sensor for modell...

C34041A Coal Spiral For The 2020S

The objective of this project is to develop an enhanced coal process...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C35039Impact Of Coal Grain Composition And Macerals Association On Fluidity Development In Australian Coals

The coke quality prediction models use thermoplastic terms as key ex...

C36004Physical And Chemical Structure Characterisation Of Biomass For Biocoke Production

Partial substitution of coking coal with renewable biomass is identi...

C35037Examination Of Contraction Pre And Post Resolidification Using A High Temperature Dilatation Rig

This project examined the contraction of coking coal samples, both p...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC