ACARP ACARP ACARP ACARP
Underground

Maximising In-Situ Stress Measurement Data from Borehole Breakout using Acoustic Scanner & Wireline Tools

Underground » Strata Control and Windblasts

Published: July 03Project Number: C10009

Get ReportAuthor: Stuart McGregor | SCT Operations

The role of horizontal stress in affecting strata behaviour in underground coal mines has been well documented. In Australia, the nature and depth of the underground coal resources has resulted in high levels of horizontal stress, typically 2-3 times the vertical stress, and up to 9 times that expected by lithostatic burial. Horizontal stress impacts on all facets of strata behaviour, and is a fundamental input into the geotechnical design process.

Traditional stress measurement techniques are based around point measurement and are typically cost and time intensive. The use of naturally occurring borehole breakout to provide stress directions, and stress magnitudes, provides a readily available resource to quantify stress regimes on the basis of depth and spatial distribution.

Borehole breakout can occur where the stress concentration around a borehole exceeds the rock strength. The borehole will fail in shear (due to overstressing) with the breakout location oriented at 90 degrees from the maximum principal horizontal stress ( H).

As well as logging breakout orientation, by assessing the rock strengths in which breakout is occurring, and conducting an assessment of stress concentrations about the borehole, the stress magnitude can also be constrained.

The two primary objectives of Project C10009 have been to:
  • Quantify stress magnitudes associated with borehole breakout through understanding strata failure mechanisms about the borehole.
  • Optimise field characterisation of rock properties.

The technique utilises commercially available geophysical tools to collect the raw data. Imaging of the breakout is achieved using an acoustic scanner. Mechanical properties of the rockmass are derived from the standard wireline suite, including sonic, density and natural gamma.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

C29007Innovative Coal Burst System To Investigate The Influence Of Confinement Loss And Pre-Conditioning On Coal Burst Mechanism

The challenges associated with designing and operating a safe and pr...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33035High Water Recovery, Low Cost Desalination Using PV-Powered Membrane Capacitive Deionisation (Mcdi)

Capacitive deionization is a robust, energy efficient and cost effec...

C28035Topsoil Deficits In Site Rehabilitation Accelerated Transformation Of Spoils To Functional Soils

The incorporation of commercial biological amendments (compost, worm...

C34036Tyre Handler Testing Rig Stage 2: Lifting Trials

Tyre handling is a major source of risk in surface mining operations...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC